Energy level diagram of S_N1

Favored conditions are with stabilized carbocation - more substitution

Carbocation Stability:

Example: Tertiary Halide

-No S_N2 possible, sterically crowded – does work by S_N1

Mechanism of S_N1:

sp³, tetrahedral, bond angle 109°

Substitution Nucleophilic S_N

Nucleophile seek positive charge Base seeks H+

possible negative charge

Never leaving groups: (negative charge not stabilized):

0	Θ	Θ	Θ	0
F	OH	OR	NR ₂	R:

Fluorine, though electronegative, is a bad leaving groups as it is small and poorly solvated.

Good leaving groups

$$O_{=S=R}^{\bigcirc} R > I^{\bigcirc} > Br^{\bigcirc} > CI^{\bigcirc} > P^{\bigcirc}$$

-OH or -OR can also act as leaving groups but they must first be transformed into H_2O or HOR by a strong acid

Leaving group activation:

1) Protonation

Highlights:

- H_2SO_4 is a proton (H⁺) donor.
- ⁻OH is transformed into a better leaving group via protonation of the O atom.
- Cl^- can then attack via $S_N 2$, kicking off $H_2 O$ in the process.

Comparison of $S_N 2$ reactions vs $S_N 1$ reactions

Characteristics	S _N 2 reactions	S _N 1 Reactions
Mechanism	Concerted (one step)	Stepwise (two steps)
Intermediate formation	No intermediate	Carbocation intermdiate
Rate dependent	Dependent on the concentration	Dependent on concentration
	of nucleophile and substrate	of substrate
Stereochemistry	Stereospecific (with inversion of	Not stereospecific (forms
	configuration)	racemic mixture)
Substrate (Starting	Works for 1° and 2° (but not 3°)	Works for 3° (very
Material)*		occasionally 2° but never 1°)
Nucleophile	Charged/strong	Neutral/weak

***NOTE:** No S_N will occur on C=C-X

Types of alkyl halide or Haloalkane

Туре	Example
Primary (1°)	$CH_3CH_2Br = Br$
Secondary (2°)	Br CH ₃ CHBrCH ₃ =
Tertiary (3°)	$(CH_3)_3CBr =Br$

Example 1)

Example 2)

Note: in principle this reaction works but will give low yield because of side reaction (elimination reaction)

 $S_N 2$ will <u>not</u> occur on carbon sites that have multiple bonds.

Example 1:

Example 2:

Example 3:

Example 4:

Example 5:

Example 6:

Example 7:

Mechanism:

Example 8:

Example 9:

 $= Br \xrightarrow[Li \ CH_3]{\oplus} No S_N \text{ reaction}$

Example 10:

Example 3)

$$\begin{array}{cccc} H-C\equiv N & \stackrel{NaOH}{\longleftarrow} & \stackrel{\oplus}{\underset{H_2}{\longrightarrow}} & \stackrel{\oplus}{\underset{Na}{\longrightarrow}} & \stackrel{\oplus}{\underset{C\equiv N}{\longrightarrow}} & H_3C-I & \stackrel{S_N2}{\longrightarrow} & H_3C-C\equiv N & + & \stackrel{\oplus}{\underset{Na}{\longrightarrow}} & \stackrel{\longrightarrow}{\underset{Na}{\longrightarrow}} & \stackrel$$

The above reaction will not occur unless hydrogen cyanide is converted into sodium cyanide using NaOH.

The product is acetonitrile, a common laboratory solvent.

Example 4)

CH₃CH₂Br $\xrightarrow{K^+ \ SH}$ CH₃CH₂-SH ethyl bromide ethane thiol "skunk smell"

Example 5) $H_3C-O-CH_3 + H^{\oplus}_{\Lambda}I^{\odot}$ H₃C—I + H₃C-O-H Forward rxn will not occur н H-C-O-H H-C $\delta + \frac{1}{H} \delta - \frac{1}{4} \delta +$ δ-Much stronger acid than MeOH Weakest bond Two possibilities н H-¢-o⊖H⊕ Θ H−Ċ⊕ ÕН δ-Ĥ

Hydrogen iodide is a strong acid and will drive the reverse reaction, meaning the forward reaction will not occur.

In order to make the above reaction occur, a stronger base (such as sodium methoxide) must be used to drive the forward reaction.

$$H_{3}C-I + H_{3}C-\overset{\bigcirc}{O} Na^{\oplus} \xrightarrow{S_{N}2}_{Works Well} H_{3}C-O-CH_{3} + Na^{\oplus} I^{\textcircled{O}}$$
Reactive Weaker Base
Example 6)
$$= \underbrace{}_{CI} + NaOH \xrightarrow{Sn2} No Sn Reaction$$

$$+ NaOH \xrightarrow{Sn2} + \underbrace{}_{OH} \overset{\textcircled{O}}{H} + \underbrace{}_{Na} \overset{\textcircled{O}}{CI}$$

A carbon attached to a double bond cannot undergo a substitution reaction The carbon with the leaving group must be sp³ to undergo a substitution reaction

Example 7)

OH + NaCl → No Rxn

 $\overset{\bigcirc}{\operatorname{OH}}$ is never a good leaving group

BUT Works with Acid as S_N1 Mechanism

 $-OCH_3$ is a strong, negatively charged nucleophile, so it favors a S_N2 mechanism (inversion of stereochemistry)

Note: the products are achiral

Alkenes and Alkynes Nomenclature

Alkene = double bond = olefin (oleum facere = to make oil) Alkyne = triple bond = acetylene (as functional group, not compound)

© chem.libretexts.org

Alkene Nomenclature

- 1. Find longest chain
- 2. Number from end to contain both ends of C=C and give lowest number to 1st C of C=C
- 3. Change "ane" to "ene" precede with number to indicate first double bond position

Below are two structural isomers of 1-butene

Note: no free rotation around the double bond. No way to interconvert between the *cis* and *trans* isomer without a chemical reaction.