RECALL:

Addition Reactions

- Occurs on double bonds and triple bonds

Hydrogenation Addition of H₂

Hydrogen Halide (HX) Addition

Reaction generally leads to syn/cis addition

Markovnikov's Rule: In an addition reaction, the positive end of an A–B system (e.g. I–Cl) adds to the least substituted end of the double bond to make the more stable carbocation.

Winter 2025

March 20, 2025

Addition of H₂O and ROH (Hydration and Ether Formation)

HO-H or RO-H

Addition R = Alkyl

 $\begin{array}{c|c} C = C & \xrightarrow{HO-H(R)} & - \begin{matrix} | & | \\ \hline H^{\oplus} & - C - C - \\ H & H & OH(R) \\ \hline (e.g. H_2 SO_4) \end{array}$

Not Stereospecific

Hydration formation

- H₂O or ROH by itself cannot add to the double bond. Need an acid (H⁺) to pull the electrons from the double bond.
- H_2SO_4 (H⁺) is a catalyst, meaning that it is not transformed or used up in the reaction but is present to lower the activation energy.
- Follows Markovnikov rules

Example 2:

Acid Required to cause addition

Ether formation

Example 1:

Example 2:

Rxn will not proceed without cat. H₂SO₄

Example 3:

Hydroboration

- B when stable and uncharged has 3 bonds and no lone pairs
- Borane forms partial bonds with another borane molecule to form B₂H₆ (diborane)
- Borane is a hydride (H⁻) donor

Concerted reaction: bond breaking and bond formation happens in a single step **Anti-Markovnikov:** the hydrogen ends up on the more substituted C in a double bond. It is SYN.

Structure of borane

Exists as Diborane (B₂H₆), but behaves like BH₃

Borane	BH_3
--------	--------

Example

Syn addition, but anti-Markovnikov addition of OH

Anti-Markovinkov

Oxidation and Reduction

Oxidation- removal of electron Reduction- Addition of electron

Example of Reduction (Hydrogenation)

There are 12 electrons in the reagent side and 14 electrons in the product side. There is an addition of two electrons, therefore classified as **reduction**.

Oxidation Reactions

Ozonolysis (lysis = cleavage) – cleavage by ozone (O_3)

March 20, 2025

7

- Use double-headed arrow to indicate resonance (\leftrightarrow)
- Highly reactive (always looking for negative charge such as the negative charge in a double bond)
- Concerted and stereospecific

Examples of carbonyl groups

Reaction scheme of ozone

Example

More examples

HO,

H H

Н

ethylene glycol (diol product)

Epoxidation:

Syn/Cis Addition Stereospecific

Epoxide/Oxirane

Concerted (bonds break and form at the same time)

Mechanism:

to quench ethylene oxide:

Example 1: trans- vs cis-Butene

The possibility of epoxidation from the top is 50% and from the bottom is 50% so a 1:1 mixture of enantiomers is form (racemic mixture).

Example 2: 1-methyl-1-cyclohexene

