January 28, 2025

ISOMERS

Structural (Constitutional) Isomers

Share the same molecular formula but have the atomic bonds in different places _

Example 1

The above three compounds are structural (also known as constitutional) isomers

Example 2

Structural or constitutional isomers

1,2,3-trimethylcyclopentae

<u>CHEM 261</u>

Example 3

Example 4

January 28, 2025

Stereoisomers

Compounds with the same molecular formula, same order of connection (base name) but connection of atoms that differ in 3D geometry

Two Types:

- 1. Diastereomers stereoisomers that are not mirror images (all stereoisomers that are not enantiomers)
- 2. Enantiomers stereoisomers that are non-superimposable mirror images of each other

Example: 1,3-dimethylcyclobutane

The first and second compounds are the same compound rotated in 3D space. The third compound has different geometry at one center, making it a stereoisomer, specifically a diastereomer.

Cis - the substituents are on the same side of the ring

Trans - the substituents are on opposite sides of the ring

Example: 1,2-dimethylcyclohexane and 1,3-dimethylcyclohexane

Example: decalin - C₁₀H₁₈

Testosterone

Molecular formula? Functional groups? Degrees of Unsaturation? How many methyls? How many methylenes? How many methines?

TEST YOURSELF

Example:

1,3-Dimethyl-1-ethylcyclopentane

Example of diastereomers:

More on differentiating structural and stereoisomers

Example:

Cyclooctane and 1,2-diethylcyclobutane and 1,1-diethylcyclobutane are structural (constitutional) isomers – they all have the same molecular formula

n-octane is not a structural isomer of the others, it has a different molecular formula

Degrees of Unsaturation = 2 (1 ring and 1 double bond)

Č₆H₁₀O

Physical Properties of Alkanes:

Boiling Point

Intermolecular forces are dominated by London forces

- Alkanes are non-polar because H and C have similar electronegativity leading them to interact with themselves through London Forces which causes a trend in boiling point:

London Forces (temporary dipoles) hold molecules together

CHEM 261	Fall 2024	September 24, 2024
		1 · · · · ·

The boiling point increases as the size of the alkane increases because the longer carbon chains have greater surface area to experience London Forces. As the boiling point increases, the graph reaches a plateau where alkane starts to decompose (#C > 20)

Melting point

- Melting points are related to the crystal structure packing efficiency

- The predicted line (dotted line) is not what we observe, but a zig zag line (continuous) resulting from crystal structure packing.

- Even numbered alkanes pack better in a crystal lattice

- Alkanes are flammable and will combust into CO2 and H2O

Solubility

- Alkanes are soluble in other organic solvents (like dissolves like)
- Not miscible (soluble) with water \rightarrow floats due to lower density

- Low density ($\rho = rho = g/cm^3$)

$$\circ \rho$$
 water ~ 1 g/cm³ or 1 g/mL

$$\circ \rho$$
 alkanes ~ 0.7 g/cm³

Separatory Funnel (density separation)

Winter 2025

January 28, 2025

Example: Pentane

Ester Group =

Molecules are held predominantly by London Forces. Some dipole-dipole interactions can occur due to the ester groups present.

Source of Alkanes

- Petroleum

Distillation of Petroleum:

• Petroleum is a mixture of alkanes and other hydrocarbons (>>200 compounds)

Fuel (gasoline)

A fuel composed of 100% "isooctane" (incorrect name) will have an octane rating of 100. 2,2,4-trimethylpentane "isooctane" is the best burning. Heptane is the worst burning (explosive burning). A fuel that burns like a mixture of 90:10 "isooctane" to heptane has a 90 octane rating.

isooctane 2-methylheptane

"isooctane"

incorrectly also called

heptane

2,2,4-trimethylpentane

At the pump you typically see an octane rating between 88 and 94.

January 28, 2025

Tetramethyl Lead -highly toxic

→ PbO + CO₂ + H₂O lead oxide Δ **b** Br-CH₂-CH₂-Br

 $PbBr_4$

Volatile and highly toxic