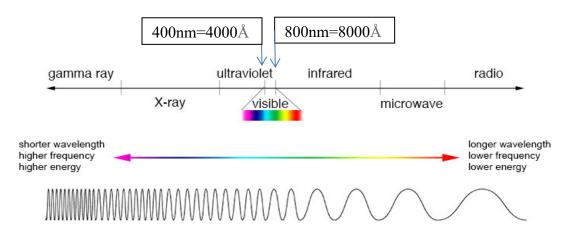
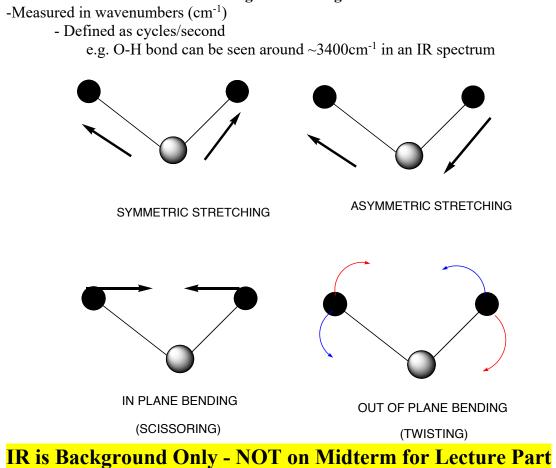

Electromagnetic Radiation:

Infrared (IR) Spectroscopy – Background only:


- E = Energy
- h = Planck's Constant= 6.6×10^{-34} joules/sec
- v = Frequency
- $\lambda = Wavelength$
- $c = Speed of light = 3.0 X 10^{10} cm/sec$

NB: There is an inverse relationship between wavelength and frequency.

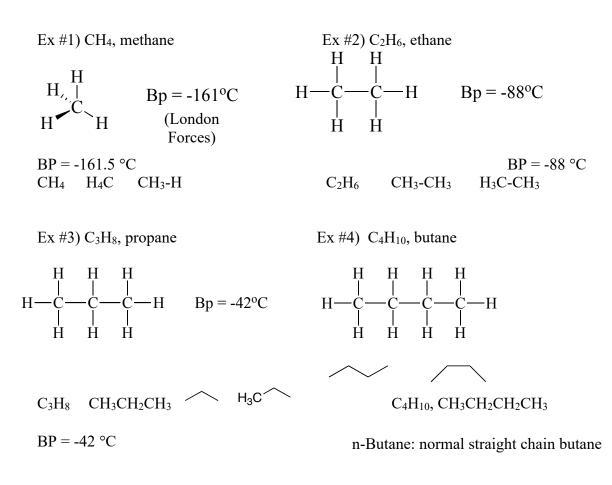
Electromagnetic Spectrum:


NB: 1nm = 10 angstrom

UV and visible light: conjugated double bond systems

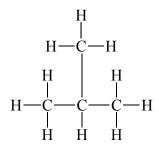
e.g. C=C bonds absorb UV light and some visible light

Infrared Radiation: bond stretching and bending modes


NEXT SECTION: Lecture Outline 2: ALKANES

Hydrocarbons - Compounds that contain only C and H

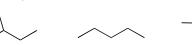
- Alkanes contain only single bonds (C-H, C-C), sp³
- Alkenes = Olefins (C=C), sp^2
- Alkynes = Acetylenes ($C \equiv C$), sp


<u>Alkanes</u>

- All carbons are sp³ hybridized (optimal bond angle of 109°)
- Single bonds (σ bonds).
- Tetrahedral geometry at every carbon
- Held together by London (dispersion) forces

NOTE: Propane has a boiling point of -42°C, which is higher than methane because it's chain-like structure allows for more surface area for London dispersion forces to take effect.

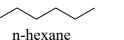
Ex #5) C₄H₁₀, isobutane or i-Butane


- Isomers are different compounds that have the same molecular formula and different structure. They have different physical properties (e.g. mp, bp, odour, biological effects)

- iso - meros same - parts one type: structural (same as constitutional) second type: stereoisomers (diastereomers and enantiomers) – will talk about more

structural isomer = constitutional isomer

n - pentane

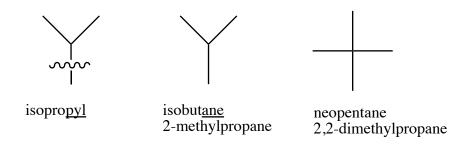

Ex #6) Pentane C_5H_{12}

Neo Group

Ex #7) Hexane C₆H₁₄

neohexane

Neopentane

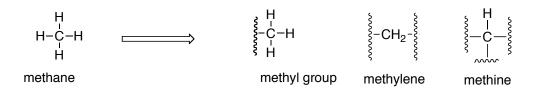

Systematic (IUPAC) Nomenclature

RULES:

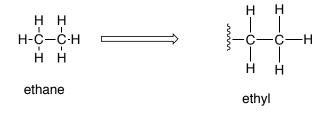
(isopentane or

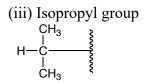
2-methylbutane)

- 1. Find the longest straight chain
- 2. Number from end of the chain, so that the 1st branch point has the lowest number
- 3. Name the chain, then add prefixes (for the groups attached) with number and name the groups attached
- 4. Separate numbers and names by dash


Note: iso = second-to-last carbon of the chain is disubstituted (2 methyl groups) neo = second-to-last carbon of the chain is trisubstituted (3 methyl groups)

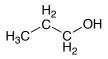
Prefixes for naming: Di (2), Tri (3), Tetra (4), Penta (5), Hexa (6) etc.


Groups (part of an alkane structure)


- In naming the particular group, drop the "ane" part and add "yl" to the name
- For example, meth<u>ane</u> \rightarrow meth<u>yl</u>

(i) Methyl group – CH₃

(ii) Ethyl group - CH₂CH₃



iso-propyl group

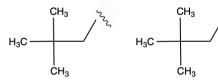
iso-propyl alcohol

(iv) *n*-Propyl group

n-propyl chain

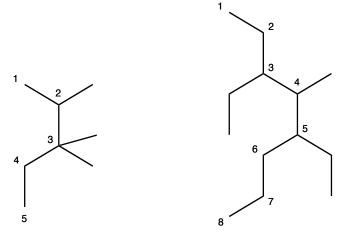
n-propyl alcohol

(v) *tert*-Butyl group (t-butyl)


 $\begin{array}{c} \mathsf{CH}_3 & \mathsf{CH}_3 \\ \xleftarrow{} \mathsf{CH}_3 & \mathsf{CI} \xleftarrow{} \mathsf{CH}_3 \\ \mathsf{CH}_3 & \mathsf{CH}_3 \end{array}$

tert-Butyl chain

tert-Butyl chloride


(vi) neo group

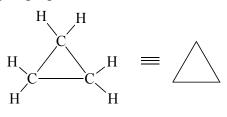
2,2-dimethylbutane

Naming Examples:

2,3,3-trimethylpentane

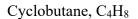
3,5-diethyl-4-methyloctane

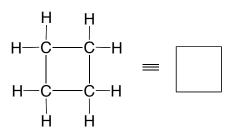
Cycloalkanes:

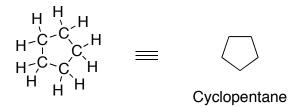

General Molecular Formula of Alkanes

- Linear alkanes: general formula is $C_NH_{2N} + 2$
- Each degree of unsaturation "removes" 2 hydrogens from the C_NH_{2N} +2 formula
- (if there are no nitrogens in the molecule, there will always be an even # of hydrogens)
- Cylcoalkanes always have at least 1 degree of unsaturation e.g.
 - $\circ~1$ Degree of unsaturation : $C_{N}H_{2N}~$ Alkanes with one ring or double bond
 - $\circ~2$ Degrees of unsaturation : $C_{N}H_{2N\text{-}2}$ Alkanes with two rings or double bonds, or one each

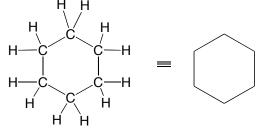
Note: Ring Structure Naming

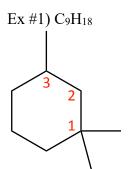

- Parent ring is the largest one
- Prefix with "cyclo"
- Start with numbering at point of maximum branching/most important functional group
- Number so as to give next branch/functional group lowest number


Cyclopropane, C₃H₆

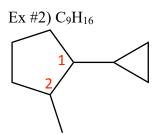

- One degree of unsaturation (*n*-propane is C₃H₈)
 Not a structural isomer (different molecular formula)
- C-C-C bond angle (60°)

- Highly reactive due to ring strain (sp³ carbons prefer to be 109°)




Cyclopentane, C₅H₁₀

Cyclohexane, C₆H₁₂



Examples of Naming Cycloalkanes:

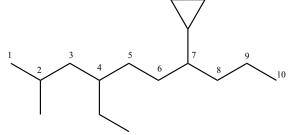
1,1,3-trimethylcyclohexane

Degree of Unsaturation= 1

1-cyclopropyl-2-methylcyclopentane

Degree of Unsaturation= 2

Ex #3) C₉H₁₆


 $\bigcirc \land$

Degree of Unsaturation= 2

1-Cyclopropylcyclohexane

Example 2 and 3 both have the formula C₉H₁₆ so they are structural isomers

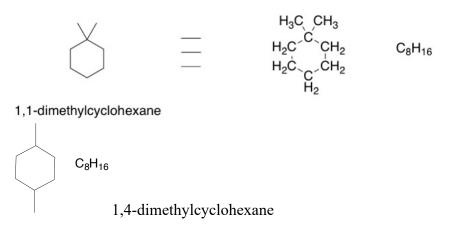
Ex #4) C₁₆H₃₂

7-cyclopropyl-4-ethyl-2-methyldecane

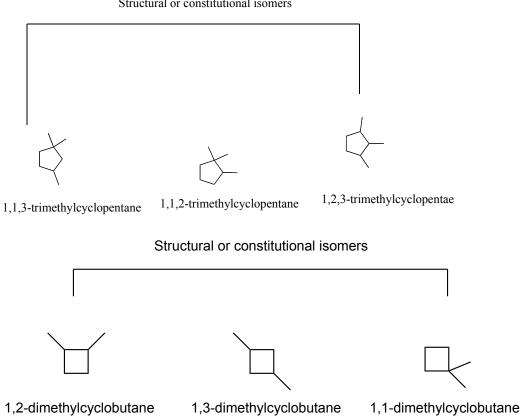
Degree of Unsaturation= 1

Degree of Unsaturation= 2

Ex #5) C₁₂H₂₂


1-Cyclobutyl-3-ethyl-1-methylcyclopentane

9

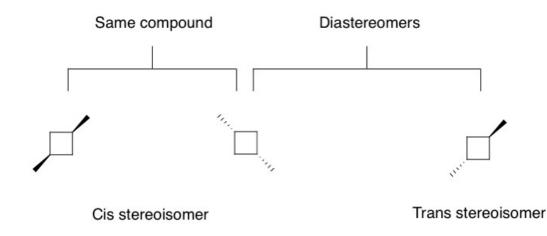

ISOMERS

Structural (Constitutional) Isomers

Share the same molecular formula but have the atomic bonds in different places

The above two compounds are structural (also known as constitutional) isomers

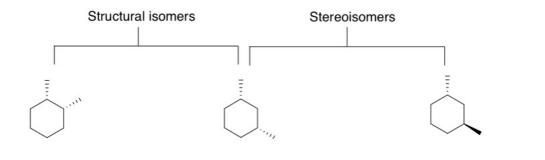
Structural or constitutional isomers


Stereoisomers

Compounds with the same molecular formula, same order of connection (base name) but connection of atoms that differ in 3D geometry

Two Types:

- 1. Diastereomers stereoisomers that are not mirror images (all stereoisomers that are not enantiomers)
- 2. Enantiomers stereoisomers that are non-superimposable mirror images of each other


Example: 1,3-dimethylcyclobutane

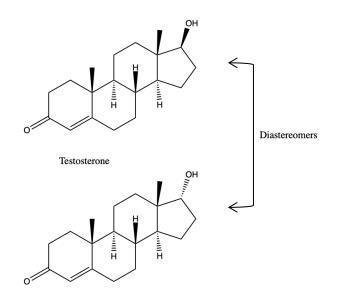
The first and second compounds are the same compound rotated in 3D space. The third compound has different geometry at one center, making it a stereoisomer, specifically a diastereomer.

Cis - the substituents are on the same side of the ring

Trans - the substituents are on opposite sides of the ring

Example: 1,2-dimethylcyclohexane and 1,3-dimethylcyclohexane

cis-1,2-dimethylcyclohexane cis-1,3-dimethylcyclohexane trans-1,3-dimethylcyclohexane


The second two compounds are diastereomers of each other.

Example:

1,3-Dimethyl-1-ethylcyclopentane

Example:

