Quantitative Analysis

Quantitative: How much of the compound of interest (quantity)

Amounts of atoms in a compound

Organic compound
$$O$$
 CO2 + H2O + NO2 O CO2 + H2O + NO2 O CO2 O

Note: Matter cannot be created or destroyed in a chemical reaction; therefore the amount of carbon in the CO_2 is equal to the amount of carbon in the starting sample.

<u>Percent Composition</u> – how much of each atom is present in the sample

Weight of carbon (in sample) =
$$\underline{12 \text{ g/mol of C}}$$
 x $10.35 \text{ mg of CO}_2 = 2.82 \text{ mg of C}$
 44 g/mol CO_2

Molecular Weight (MW) of
$$CO_2 = 12$$
 (C) $+ 2 \times 16$ (O) $= 44$ g/mol

Weight of hydrogen =
$$\underline{2(1 \text{ g/mol of H}) \text{ x}}$$
 3.42 mg of H₂O = 0.383 mg of H 18 g/mol of H₂O

NB: H₂O contains two hydrogen. MW of H₂O =
$$(2 \times 1) + 16$$

H₂ O

Weight of oxygen = 4.34 mg sample - (2.82 mg of C + 0.383 mg of H) = 1.14 mg of O

Now one can calculate percentage composition:

% Composition:

%
$$C = \underline{\text{Mass of carbon}} \times 100\%$$
 = $\underline{2.82 \text{ mg of } C} \times 100\%$ = 65.1% Mass of sample 4.34 mg

%
$$H = 0.383 \text{ mg of } H = 8.83\%$$

4.34mg

$$\% O = 100\% - 65.1\% - 8.83\% = 26.1\%$$

The empirical (and with additional data, molecular formula) can be determined from % composition

Determining the empirical experimental formula:

Definition: Empirical formula is the ratio of atoms to each other in a molecular formula

There are three steps to calculate the empirical formula:

- 1) Divide each percentage (%) by the atomic weight of the element → crude ratio
- 2) Divide each crude ratio by the smallest crude ratio → refined ratio
- Multiply the refined ratio by an integer value $(x2, x3, x4...) \rightarrow$ integral ratio

% Composition	Crude Ratio	Refined Ratio	Integral Ratio
65.1 % C	65.1 / 12.0 =	5.42 / 1.63 =	$3.34 \times 3 = 10$
	5.42	3.34	
	(% C / At Wt C)		
8.83 % H	8.83 / 1.01 =	8.76 / 1.63 =	$5.39 \times 3 = 16$
	8.76	5.39	
26.1 % O	26.1 / 16.0 =	1.63 / 1.63 =	$1.00 \times 3 = 3$
	1.63	1.00	

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Using this formula an empirical weight can be calculated.

C:
$$10 \times 12 = 120 \text{ g/mol}$$

H:
$$16 \times 1 = 16 \text{ g/mol}$$

O:
$$3 \times 16 = 48 \text{ g/mol}$$

$$C_{10}H_{16}O_3 = 184 \text{ g/mol}$$

Note: Suppose the molecular weight is given as 368 g/mol, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $C_{20}H_{32}O_6$.

The molecular weight can be independently determined via mass spectrometry.

Gas Law: (Different kinds of units for pressure and volume can be used provided the value of the gas constant is adjusted to those units)

$$PV = nRT$$
 $P = Pressure in atm$

V = Volume in L

n = Number of moles

T = Temperature in ${}^{\circ}K$; ${}^{\circ}K$ and ${}^{\circ}C$ are the same size, but $0 K = -273 {}^{\circ}C$

R = Gas Constant

Standard conditions for temperature and pressure (STP)

Old definition of STP used in this course

Standard pressure is 1 atmosphere = 760 mmHg; standard temperature is $0^{\circ}\text{C} = 273 ^{\circ}\text{K}$; 1 mol of gas occupies 22.4 L at STP.

<u>Sample Question</u>: A certain amount of N₂ gas occupies a volume of 3.0 mL at 750 mmHg and room temperature (298 °K). What volume it will occupy at standard pressure and temperature (STP)?

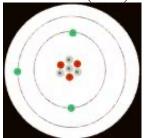
$$\frac{P_1V_1}{P_2V_2} = \frac{nRT_1}{nRT_2}$$
 divide equations to give
$$\frac{P_1V_1}{P_2V_2} = \frac{T_1}{P_2V_2}$$

$$\begin{array}{lll} P_1 = 760 \ mmHg & T_1 = 273 \ ^{\circ}K & V_1 = \ ? \\ P_2 = 750 \ mmHg & T_2 = 298 \ ^{\circ}K & V_2 = 3 \ mL \end{array}$$

Solve for V₁

$$V_1 = \underbrace{T_1 P_2 V_2}_{T_2 P_1} = \underbrace{(273 \text{ °K})(750 \text{ mmHg})(3 \text{ mL})}_{(298 \text{ °K})(760 \text{ mmHg})} = 2.71 \text{ mL}$$

Question: How many moles of N₂ is 2.71 mL at STP and what is its mass?


Note: 1 mole of an ideal gas occupies 22.4 L at STP.

$$2.71\times10^{\text{--}3}$$
 L \times 1 mole = 1.21 \times 10 $^{\text{--}4}$ moles of N_2 = 22.4 L

$$1.21\times10^{-4}\,mol\times28$$
 g/mol = 3.4 mg of N_2

Atomic Theory:

- Neils Bohr (1913) – Won the Nobel prize for his atomic theory – NOT fully correct

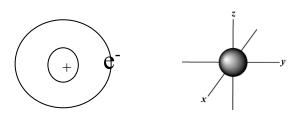
- The neutrons (no charge) and protons (positively charged) occupy a dense central region called the nucleus (p⁺ +N)
- The electrons (negatively charged) orbit the nucleus much like planets orbiting the Sun
- The atom is mostly made up of empty space
- de Broglie (1924) His 12 page PhD thesis won him the Nobel Prize
 - He proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave - particle duality of matter)

Particles ↔ Waves

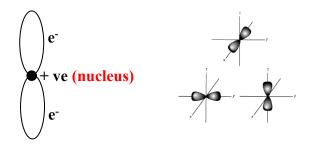
Often the electron density distribution is called an "orbital" by chemists

- The orbitals of an atom are described by wave functions (mathematical equations)
- These have no direct physical meaning, but when squared describe electron density

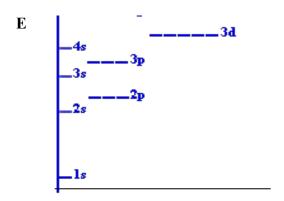
 ψ = Wave function


 ψ = orbital

 ψ^2 = (orbital)² = electron density distribution


For the hydrogen (H) atom: >98% of electron density is found in a sphere with diameter of 1\AA (10^{-8} cm)

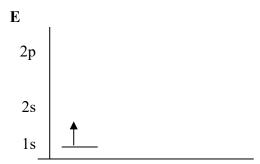
Orbitals:


1. s-Orbital - Spherical shaped (electron density)

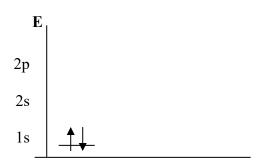
2. p-Orbital - Dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Energy (E) Level Diagram for an Atom:

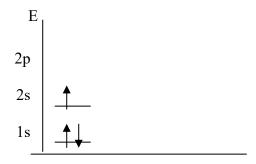
Degenerate orbitals have the same energy

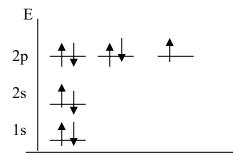

-e.g. all three 2p orbitals have the same energy

Atoms	<u>Protons (+)</u> = Atomic #	Neutrons	1s electrons	2s electrons	2p electrons
Н	1	0	1		
Не	2	2	2		
Li	3	3	2	1	


Rules for Filling Electron Orbitals – AUFBAU Rule (Building-Up Principle):

- 1) Add electron to the lowest energy orbital available
- 2) Maximum of two electron per orbital (each having opposite spin quantum number)
 - Pauli Exclusion Principle
- 3) Place one electron into each orbital of the same energy (degenerate orbitals), before adding a second electron
 - Hund's Rule of Maximum Multiplicity


Hydrogen (H)


Helium (He)

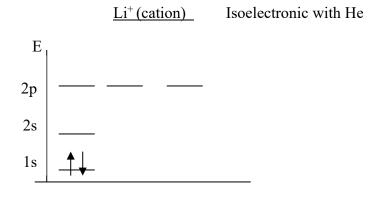
Lithium (Li)

Fluorine (F)

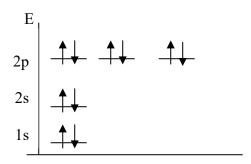
All elements want an inert gas configuration (e.g. Ne) and from the diagrams above, both Li and F are unhappy with unfilled orbitals (not in an inert gas configuration).

If Li loses an electron to become Li⁺ and obtain inert gas configuration, it becomes isoelectronic with He

-Isoelectronic = same electronic structure

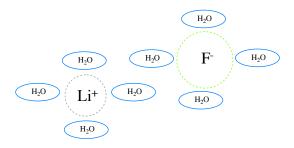

If F gains an electron to become F and obtain inert gas configuration, it becomes isoelectronic with Ne

Ionic Bonding

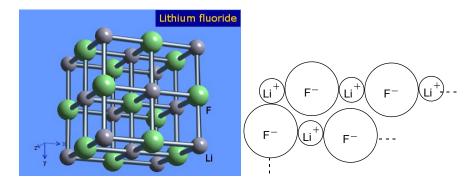

Lithium fluoride (LiF) is an example of <u>ionic bonding</u> in which positive and negative species are bonded to each other. Li could lose 1e⁻ from 2s orbital to become isoelectronic to He (as Li⁺) and F could gain 1e⁻ to become isoelectronic to Ne (as F⁻).

$$Li^{\circ}$$
 + F° \rightarrow Li^{+} + F^{-}
 $Loss of 1e^{-}$ Gain of $1e^{-}$

Isoelectronic = Same electron configuration



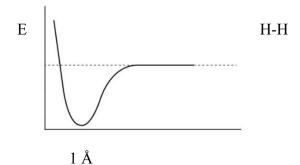
<u>F</u> (anion) Isoelectronic with Ne



In space, Li⁺ and F⁻ would be attracted to each other

In solution, Li⁺ and F⁻ might be separated due to solvation (e.g. water would surround). Larger ions would have a higher degree of solvation than smaller ions (more water molecules would surround the larger molecule).

In a solid, Li⁺ and F⁻ would form a cubic crystalline solid

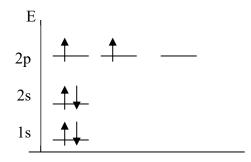


Electronegativity

- Desire of atoms for electrons
- Electronegativity increases from left to right across the period in the periodic table (atoms get stronger attraction as the nuclear charge increases
- Electronegativity increases from bottom to top in the group (Distance between nucleus and valence shell decreases)

Covalent Bonding

- Sharing of electrons between the atoms
- More common in organic chemistry
- One bond represents 2 electrons



CHEM 261

Electronic configuration of carbon (C):

- Atomic number = 6
- Atomic weight = 12

Carbon (C)

- Carbon needs to gain or lose 4e⁻ to get an inert gas configuration, but this would result in unfavourable charge buildup:

January 10, 2023

- C⁴⁺ is isoelectronic with He
- C⁴⁻ is isoelectronic with Ne
- So, carbon makes up to 4 bonds to share 4e⁻ (covalent bonding)