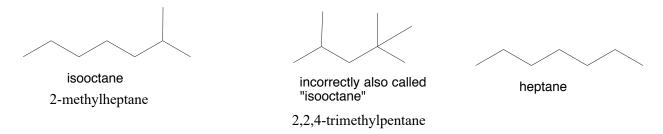

Source of Alkanes

- Petroleum


Distillation of Petroleum:

• Petroleum is a mixture of alkanes and other hydrocarbons (>>200 compounds)

Fuel (gasoline)

A fuel composed of 100% "isooctane" (incorrect name) will have an octane rating of 100. 2,2,4-trimethylpentane "isooctane" is the best burning. Heptane is the worst burning (explosive burning). A fuel that burns like a mixture of 90:10 "isooctane" to heptane has a 90 octane rating.

At the pump you typically see an octane rating between 88 and 94.

Tetramethyl Lead

Pb
$$\rightarrow$$
 PbO + CO₂ + H₂O lead oxide \rightarrow Br-CH₂-CH₂-Br PbBr₄

Volatile and highly toxic

RECALL:

Isomers are compounds with the same molecular formula & a different arrangement of atoms in the molecule

- Structural (Constitutional) Isomers
- Stereoisomers
 - Diastereomers
 - Enantiomers

Odd Hassel – proposed conformations of tetrahedral carbon-carbon bond; won the 1969 Nobel Prize with Derek Barton

Conformation

Different 3D shapes of a <u>single (the same) molecule</u> obtained by rotation about single bonds A molecular <u>conformation</u> is any spatial arrangement of atoms that can be interconverted by rotation about single bonds of the molecule

Example: Ethane

Less stable Conformation H
$$=$$
 H $=$ H $=$

At room temperature (20 °C): 15-20 kcal/mol of energy available. This allows for rotation around C-C to occur rapidly at room temperature. – Important to know

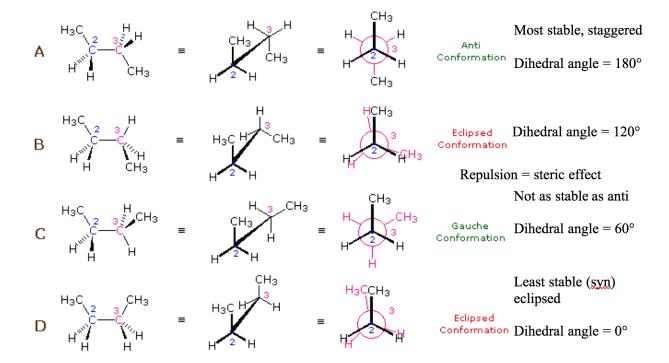
There is a Steric effect between neighboring bonds to hydrogens: Repulsion of filled shells of e

Newman Projections

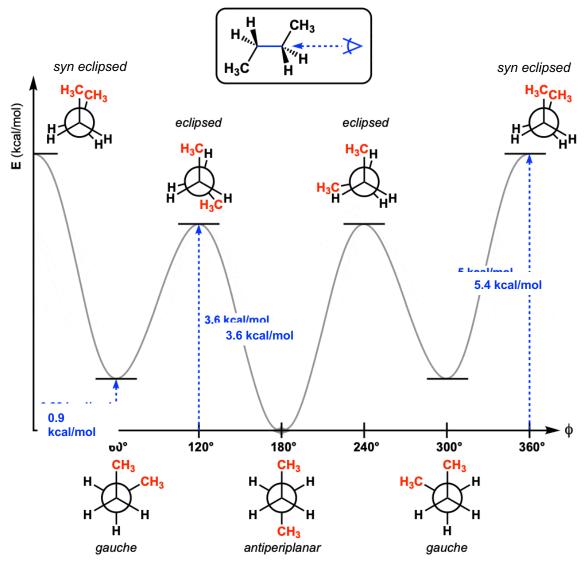
This is a tool to examine the conformation (rotational 3D geometry) about one specific bond

- Look at one bond at a time
- Back C is a large circle and the front C is a dot

Staggered conformation (hydrogens are **anti**) **Anti** means opposite side


Eclipsed conformation (hydrogens are **syn**) **Syn** means same side

- Needs energy to go from one conformation to another
- Steric effect repulsion between two filled shells of electrons
- Increased repulsion is observed as the H move closer in space. Staggered conformation has a lower energy than eclipsed conformation due to less steric repulsion between the H atoms.


Example: n-butane (C_4H_{10})

Rotation around all bonds still very rapid.

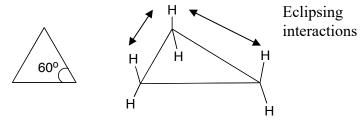
Most stable (most populated conformation) is called anti and has groups as far away as possible. **Note:** Newman Projection allows you to look at only one bond at a time. In the case of n-butane, we are looking through the central bond

Butane Conformational Energy Diagram:

anti-staggered

Notes:

<u>Anti Staggered</u> – two large groups (i.e., CH₃) are as far away from each other as possible (180°) (lowest energy, favourable)


Staggered Gauche – two large groups are 60° relative to each other

Eclipsed – the groups are as close to each other as possible.

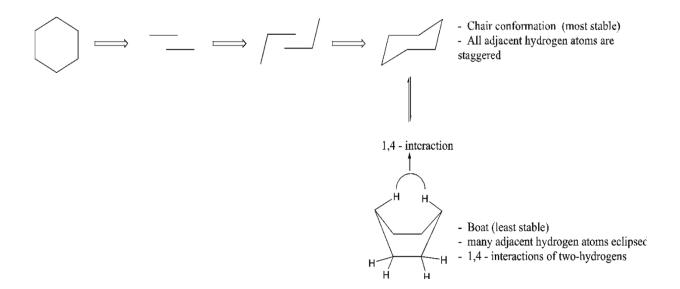
 $\underline{\textbf{Syn Eclipsed}}$ – two large groups are as close together in space as possible. Two large groups are 0° relative to each other (**highest energy, unfavourable**)

Cycloalkane Conformations:

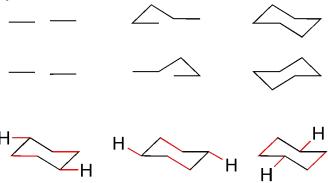
Cyclopropane –bond angle 60° – relatively rigid structure, very reactive

- High energy molecule due to the internal angle being 60° and the eclipsing interactions between the H.

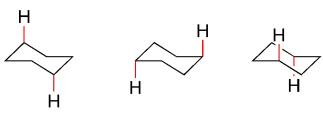
Cyclobutane – bond angle close to 90° – does have some flexibility


3D structure of cyclobutane:

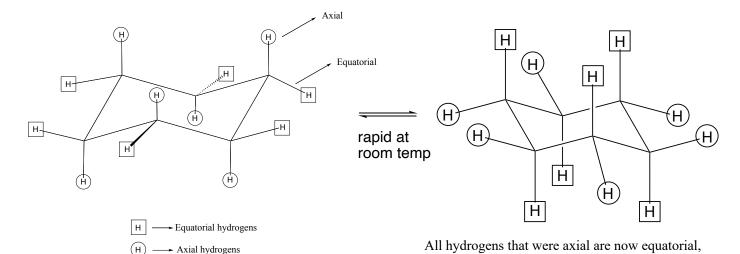
- Not completely flat and adopts an envelope / bent shape


 $\label{eq:cyclopentane} \textbf{Cyclopentane} - bond \ angles \ nominally \ 108^\circ - more \ flexible \ than \ cyclobutane; \ close \ to \ 109^\circ \ but \ geometry \ is \ still \ constrained$

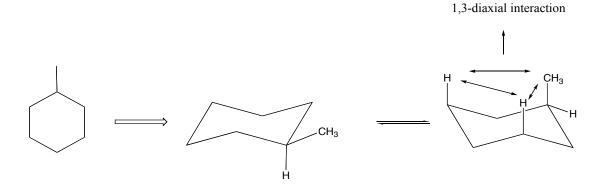
Cyclohexane – bond angles actually 109°, not 120° as in flat hexagon, due to the C being sp³ hybridized


Cyclohexane Conformations – How to draw:

Another way to draw cyclohexane:

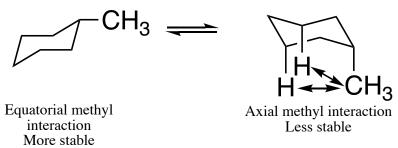


Parallel Lines in Equatorial Position



Vertical Lines in Axial Position

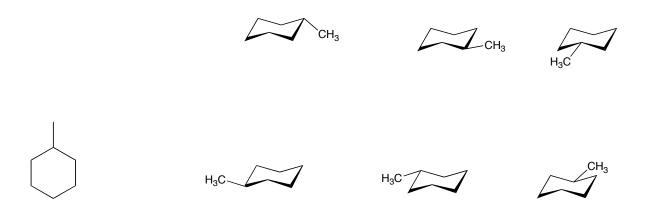
Cyclohexane Conformations Axial vs Equatorial Positions and Ring Flip



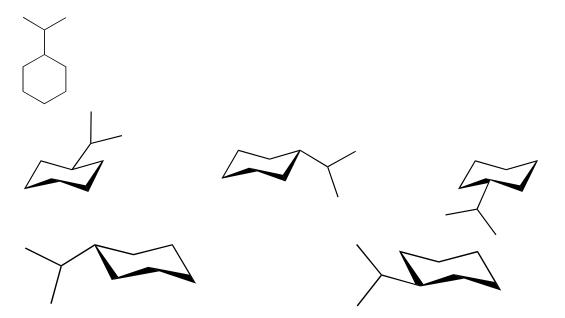
<u>Substituted Cyclohexanes</u> – Draw the most stable conformation

- Largest (bulkiest group close to ring) group placed equatorial – otherwise get unfavorable 1,3-diaxial interactions
- 1,3-diaxial interaction (steric effect) makes this conformation less stable.

and all that were equatorial are now axial



Examples of Most Stable Conformation of Substituted Cyclohexanes:


February04, 2025

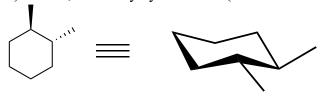
1. Methylcyclohexane

- 6 drawings of same molecule

2. Isopropylcyclohexane

For most stable conformation, largest group at equatorial position

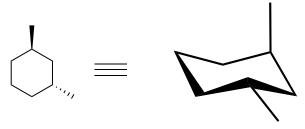
Examples of Most Stable Conformation of Polysubstituted cyclohexanes:


Examples:

1) cis-1,2-dimethylcyclohexane

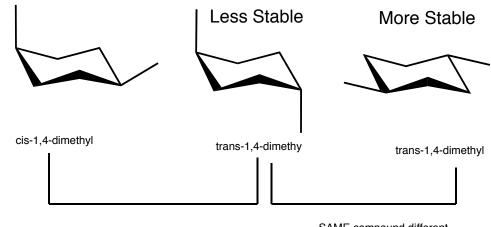
- One methyl group axial and one methyl group equatorial

2) trans-1,2-dimethylcyclohexane (a stereoisomer (diastereomer) of above structures)



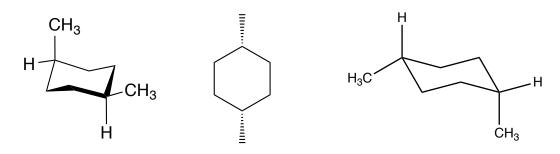
- Both methyl groups equatorial

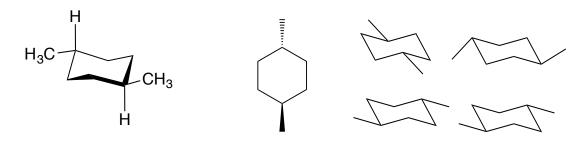
3) cis-1,3-dimethylcyclohexane (a structural isomer of above structures)


- Both methyl groups equatorial

4) trans-1,3-dimethylcyclohexane: a stereoisomer of above cis-1,3- dimethylcyclohexane

- One methyl group axial and one methyl group equatorial


5) cis-1,4-dimethylcyclohexane and trans-1,4-dimethylcyclohexane:


Stereoisomers (Diastereomers)

SAME compound, different CONFORMATIONS

6) cis-1,4-dimethylcyclohexane:

7) trans-1,4-dimethylcyclohexane:

