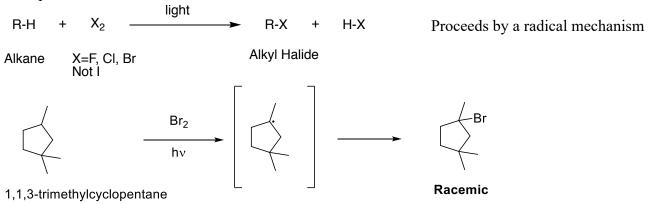

Review of concepts:

Achiral, Meso Compound


Substitution Reactions

Remember: Radical Substitution

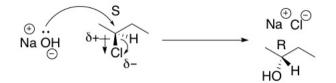
1) Homolytic bond breaking

A-B ۰B A۰

Example:

Note: Although radicals are sp³ hybridized, rapid inversion around the central C results in a loss of stereochemistry. Hence, the resulting product would be a racemic mixture.

2) Heterolytic Bond Breaking (Ionic Substitution)

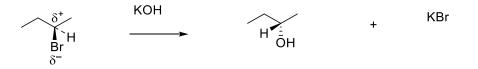

Nucleophile is a substance that seeks positive charge

Types of Nucleophilic Substitution (S_N)

 S_N1 - rate depends on 1 concentration

 $S_N 2$ - The rate is dependent on the concentration of the nucleophile and the nucleophile (2 concentrations)

Sn2 Mechanism

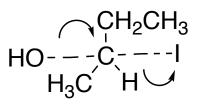

Reverse reaction will not occur. OH⁻ is a terrible leaving group - **Rate**: Depends on concentration

- Inversion of configuration (Walden inversion)

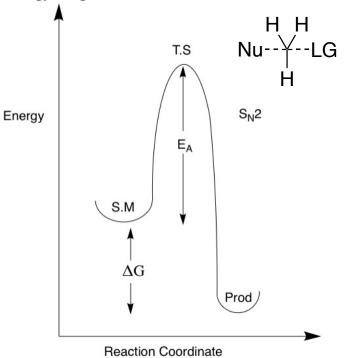
- **Concerted**: The bonds of the starting material break at the same time as the product bonds form.


- **Stereospecific**: stereochemistry of the starting material determines the stereochemistry of the product.

- Works for CH₃-X, R-CH₂X, R₁R₂CHX.


Another example of mechanism of S_N2 reaction

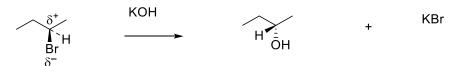
As such, the reaction below is not reversible:


(S)-2-iodobutane

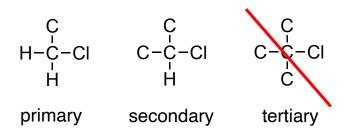
inverison of stereochemistry

 $S_N 2$ always inverts stereochemistry

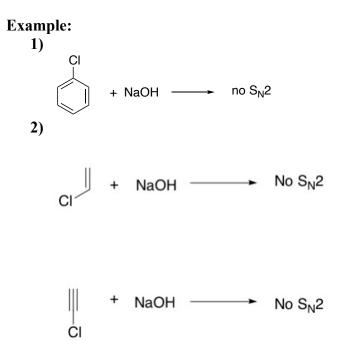
Favored conditions are with less steric bulk, primary best and secondary okay



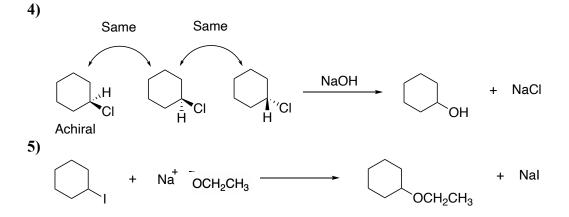
Energy Diagram of S_N2 Reaction

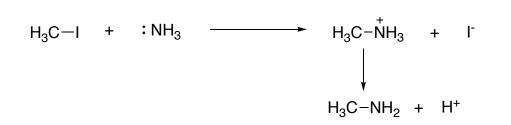

There is no intermediate in the S_N2 reaction, as it is concerted

Good Leaving Groups	Bad Leaving Groups
$RSO_{3} > I > Br > Cl >> F - (due to$	H ⁻ , R ⁻ (alkyl), ⁻ NR ₂ , ⁻ OR, ⁻ OH, F ⁻
solvation)	


HOH, HOR are okay leaving groups, but need to protonate with acid before it can leave

Leaving groups must be connected to a primary or secondary carbon (carbon that has at least one hydrogen, preferably 2)

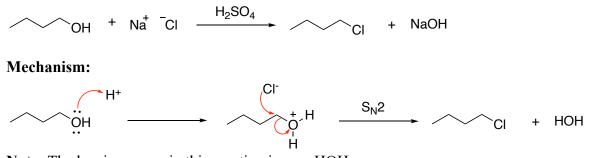

More examples of reactions that do not proceed via $\ensuremath{S_N2}$


3)

 $Na^{+}OH + H_{3}C^{+}OCH_{3} \rightarrow Na^{+}OCH_{3} + H_{3}C-OH$

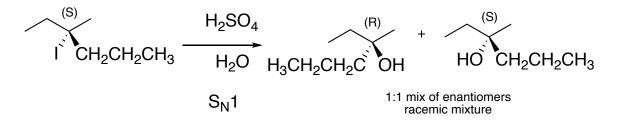
Note: Methoxide (CH₃O⁻) and hydroxide (⁻OH) are bad leaving groups

6) Neutral leaving group containing lone pair



7)

Note: OH is never a leaving group but if you add a strong acid or the reaction happen in a strongly acidic condition (see next example), the reaction will occur


8)

Note: The leaving group in this reaction is now HOH


<u>Chem 261</u>	Winter 2025	February 27, 2024	
9)			
→O→ + Diethyl ether	NaOH	<u>^</u> 0 №a + HO	
Note: Alkoxide (⁻ OR) or hydroxide (⁻ OH) are bad leaving group therefore no Sn2 reaction will occur on either direction. However, if the reaction happens in strongly acidic condition the reaction will occur. (see mechanism below)			
10) O Diethyl eth	∽ + HOH <u>H₂</u> SO ₄ ner	→ ́он + но́	
~"^	H.O.H	- H+	
, H+	→ `0,` H	\rightarrow OH + $\overset{H}{}_{}_{}{}_{}$	
11)			
$\overbrace{\overset{O}{\ldots}}^{\Theta} + : \overset{\Theta}{\operatorname{CH}_3} \longrightarrow \overbrace{\overset{O}{\ldots}}^{\Theta}$			
$ \begin{array}{c} 12) \\ Br_2, hv \\ \end{array} $			
Br CH ₃ O ^O			

S_N1 Reaction:

Characteristics of S_N1 reactions:

- Stepwise
- Carbocation intermediates
- Rate dependent on concentration of substrate only
- Not stereospecific
- Favoured by heat or acid
- Works for 3° and sometimes 2° but never 1°

