Review from last time:

non superpossable mirror image

Reactions of alkanes: Two will be considered

1) Combustion:

2) Halogenation of alkanes

R = any alkyl group, R-X = alkyl halide / haloalkane (X= Cl, Br, F); F₂ is the most reactive and I₂ fails to react.

In this course, we will be focused on chlorination and bromination.

Substitution reaction (via radicals) – Substitute H with X

e.g. Chlorina	L							
CH ₄	+	Cl ₂		no		CH ₃ Cl	+	HCI
methane						methyl chloride chloromethane	9	
			light energy, $E = hv$ $h = Planck's \text{ constant } 6.6 \times 10^{-34} \text{ joules-sec}$ v = frequency of light					
CH ₃ CI	+	Cl ₂		hυ		CH ₂ Cl ₂ methylene chlc dichloromethar	+ oride ne	HCI
CH ₂ Cl ₂	+	Cl ₂		hυ		CHCl ₃ chloroform trichloromethar	+ 1e	HCI
CHCI3	+	Cl ₂		hυ	→	CCI ₄ carbon tetrachl tetrachlorometh	+ oride nane	HCI

Mechanism of reaction:

- Step by step description (proposal) of a reaction process (hypothetical and difficult to "prove")

Two kinds of mechanism

1. **Homolytic** (radical): One electron goes to each atom once the bond in broken. e.g. Free radical halogenation of alkanes

2. **Heterolytic** (polar rxns): The electron pair goes to one of the atoms once the bond is broken. e.g. Addition reactions of alkenes; elimination reactions

Homolytic reactions are less common than heterolytic reactions - Initiated by heat (Δ) or by light (hv)

1

Mechanism of halogenation of CH₄:

of radicals and is quite rare during the progress of the reaction.

Note: The above mechanism also applies to other halogens (F, Cl, Br; not I)

Example: Ethane

$$H_3C - CH_3 \xrightarrow{Cl_2} CH_3 - CH_2 - CI + HCI$$

$$CH_3 - CH_3 \xrightarrow{Br_2} CH_3 - CH_2 - Br + HBr$$

Further examples

1. Cyclohexane

2. Methylcyclohexane

- The reaction can utilize either heat (Δ) or light (hv)
- Different types of hydrogen can be pull from a methylcyclohexane in a radical halogenation reaction to give various products. However, just one main product is obtained. This is explained in terms of the stability of the radical formed during the reaction process.

Stability of radicals:

- Stability increases with alkyl substitution
- Alkyl groups are polarizable and donate electrons to electron deficient sites better than hydrogens (this is called **inductive effect** and occurs through sigma bonds)

Or it can also be summarized below from least to most stable radicals:

·CH ₃	<	[·] CH ₂ R	<	[·] CHR ₂	<	·CR ₃
methyl		primary (1°)		secondary (2°)		tertiary (3°)
radical		radical		radical		radical
(least stab	ole)					(most stable)