Thermodynamic vs. kinetic products

The two possible products are structural isomers.

The product 3-bromobutene is a **1,2-addition** product, whereas 1-bromo-2-butene is the product of a **1,4-addition** reaction. The numbers (**1,2-** or **1,4-**) indicate the position where the H and Br added to the 1,3-butadiene.

From the 2 resonance forms (connected by the double-headed arrow) of the allylic cation in the above figure, we see that the positive charge is shared between the C2 and C4.

Note: The allylic cation has two electrons delocalized across the three carbons. It was drawn to have two resonance forms, but it is a *single entity*. Neither resonance form depicts the actual structure, but rather the molecule exists as a combination of the two resonance forms. The 'primary carbocation' is stabilized, as it is allylic.

Why does the temperature affect the ratio obtained?

- 3-bromo-1-butene has a higher yield at the lower temperature because it is formed faster than 1-bromo-2-butene due to it's lower E_a: kinetic control
- 3-bromo-1-butene has lower yield than 1-bromo-2-butene at higher temperature due to **thermodynamic control**. The addition of bromine to the allylic cation is reversible at high temperature. 3-Bromo-1-butene can be converted back to the allylic cation, and then form 1-bromo-2-butene which is the thermodynamically more favoured product as it is more stable. The thermodynamic product is determined by the equilibrium result controlled by ΔG .

Now let's look at the energy diagram of the HBr addition to butadiene reaction

Reaction Coordinate

The activation energy barrier to form the 1,2-product, 3-bromo-1-butene is much *smaller* than the 1,4-product, 1-bromo-2-butene (so that it can be formed easier and **faster**. We call this **kinetically favored**).

However, the energy of 1-bromo-2-butene is lower than 3-bromo-1-butene, so that it is more **stable** than 3-bromo-1-butene (it is **thermodynamically favored**).

Why is 1-bromo-2-butene more stable?

- The bromine atom is bulky. It likes to stay away from the rest of the molecule to avoid steric clashes.
- Alkene carbons are somewhat electron deficient. More highly substituted alkenes are more stable due to donation of electron density by the substituents (C vs. H)

Polymerization: If no nucleophile is present in previous addition reaction - e.g. isoprene

Alcohols are classified as primary (1°) , secondary (2°) , or tertiary (3°) , depending on the number of organic groups bonded to the hydroxyl bearing carbon.

Naming:

1. Find the longest chain, with the maximum number of OH groups.

2. Number in such a way to give the OH the lowest number

3. Drop the "e" of the alkane name, add "ol"

Examples:

Eicosan-6,9,12,15-tetraen-1-ol

Polyols:

If more than one hydroxyl group is present, a prefix is added to the "ol" :

2 OH's	diol (glycol)
3 OH's	triol
4 OH's	tetraol
5 OH's	pentaol

Some simple and widely occurring alcohols have common names that are accepted by IUPAC. For example:

Ethylene glycol is an antifreeze component.

Glycerol is a precursor to fats (fatty acid esters in cell membranes) and is used in personal lubricants such as KY jelly.

Examples: Hormones

Physical properties

- The hydroxyl group is a very polar group. This allows small alcohols (methanol, ethanol, propanols) to be miscible with water as they are good hydrogen bond donors *and* acceptors.

- Alcohol densities are usually $\rho < 1.0$.

- They have high boiling and melting points, again due to their hydrogen bonding capabilities.

Look at the following comparisons:

Name	Methanol	Ethane
Formula	CH ₃ OH	CH ₃ CH ₃
Molecular Weight (g/mol)	32	30
Boiling Point (° C)	65	-89
State (at room temp)	liquid	gas

Ethane has almost the same molecular weight as methanol. However, the boiling point is much lower than methanol.

