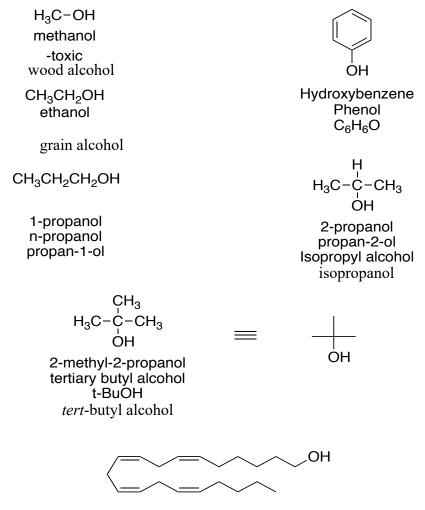

Alcohol and Ether Nomenclature

Alcohols are classified as primary (1°) , secondary (2°) , or tertiary (3°) , depending on the number of organic groups bonded to the hydroxyl bearing carbon.

Note: –OH is called hydroxyl, hydroxy or alcohol

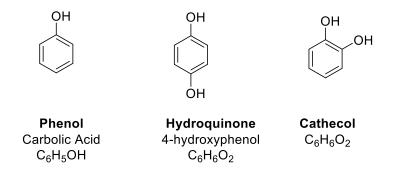
Naming:


1. Find the longest chain, with the maximum number of OH groups.

2. Number in such a way to give the first OH the lowest number

3. Drop the "e" of the alkane name, add "ol"

Note: the alcohol (-OH) takes priority over multiple bonds and halogens

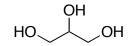

Examples:

Eicosan-6,9,12,15-tetraen-1-ol Eicosa-6Z,9Z,12Z,15Z-tetraen-1-ol

Note: most alcohols are flammable, however, as the chain gets longer, the molecules would tend to stick together (i.e., intermolecular forces) and would be less flammable.

More examples: Aromatic Alcohols

Polyols:

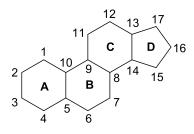

If more than one hydroxyl group is present, a prefix is added to the "ol" :

2 OH's	diol (glycol)
3 OH's	triol
4 OH's	tetraol
5 OH's	pentaol

Some simple and widely occurring alcohols have common names that are accepted by IUPAC. For example:

ΗÓ ЮH

ethylene glycol or ethan-1,2-diol

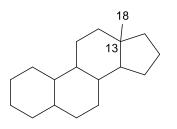


glycerol or glycerine or propan-1,2,3-triol

Ethylene glycol is an antifreeze component.

Glycerol is a precursor to fats (fatty acid esters in cell membranes) and is used in personal lubricants such as KY jelly.

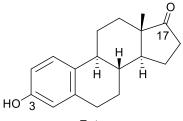
Example: Steroids

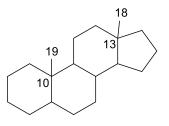


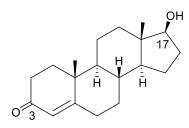
Groups above: β (beta)


Groups below: α (alpha)

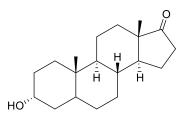
Steroid Skeleton

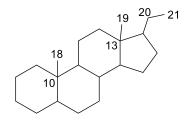

Types of Steroids


Estrane Characterized by a methyl group in C13



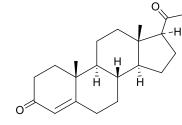
Estradiol



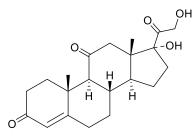


Testosterone

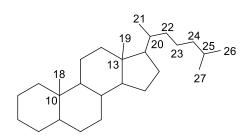
Androsterone

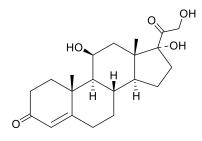


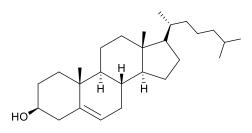
- Characterized by two -CH $_3$ groups in C10 and C13, and a substituent


- Not biologically active

Pregnane


in C17.


Progesterone Pregnancy Hormone


Cortisone (Adrenocorticoid) Characterized by a carbonyl at C11 and pregnane skeleton

Cholestane

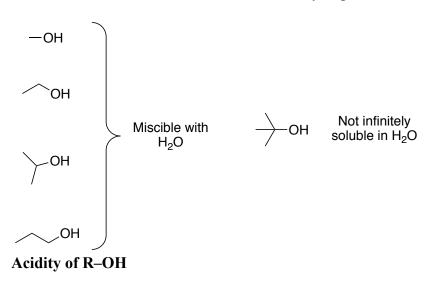
Cortisol Stress Hormone

Cholesterol

Physical properties

- The hydroxyl group is a very polar group. This allows small alcohols (methanol, ethanol, propanols) to be miscible with water (if the number of C < 4) as they are good hydrogen bond donors *and* acceptors.

- Soluble in H₂O, as the #C increases, the solubility decreases.


- Alcohol densities are usually $\rho < 1.0 \text{ g/cm}^3$.

- They have high boiling and melting points, again due to their hydrogen bonding capabilities.

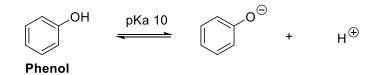
Look at the following comparisons:

Name	Methanol	Ethane
Formula	CH ₃ OH	CH ₃ CH ₃
Molecular Weight (g/mol)	32	30
Boiling Point (° C)	65	-89
State (at room temp)	liquid	gas

Ethane has almost the same molecular weight as methanol. However, the boiling point is much lower than methanol. Methanol molecules like to stick together via H-bonding while ethane molecules interact with each other via hydrophobic interactions.

$$H^{O}H \xrightarrow{pKa 15.7} H^{O} \xrightarrow{(G)} + H^{\oplus}$$

$$H_{3}C-OH \xrightarrow{pKa 16} H_{3}C-O^{\ominus} + H^{\oplus}$$


$$H_{3}C-OH \xrightarrow{pKa 17} H_{3}C-O^{\ominus} + H^{\oplus}$$

$$H_{3}C-COH \xrightarrow{(H_{3})} H_{3}C-CO^{\ominus} + H^{\oplus}$$

$$H^{O}H \xrightarrow{(H_{3})} H^{O}H \xrightarrow{(H_{3})} H^{O}H \xrightarrow{(H_{3})} H^{O}H$$

- Harder to make a t-butoxide than methoxide. The alkyl group donates electron density to the C–O bond and destabilizes the negative charge (less favourable).

Conjugated/Aromatic R-OH

- More acidic than H₂O
- Resonance takes electron density away from the O atom, resulting in stabilization of the negative charge.