Polyols:

If more than one hydroxyl group is present, a prefix is added to the "ol" :

2 OH's	diol (glycol)
3 OH's	triol
4 OH's	tetraol
5 OH's	pentaol

Physical Properties of Alcohols

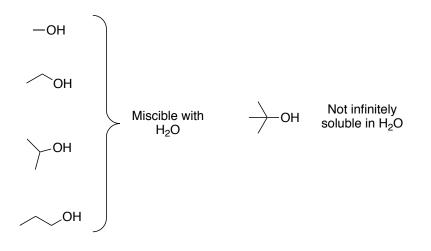
- The hydroxyl group is a very polar group. This allows small alcohols (methanol, ethanol, propanols) to be miscible with water (if the number of C < 4) as they are good hydrogen bond donors *and* acceptors.

- Soluble in H₂O, as the #C increases, the solubility decreases.

- Alcohol densities are usually $\rho < 1.0$ g/cm³.

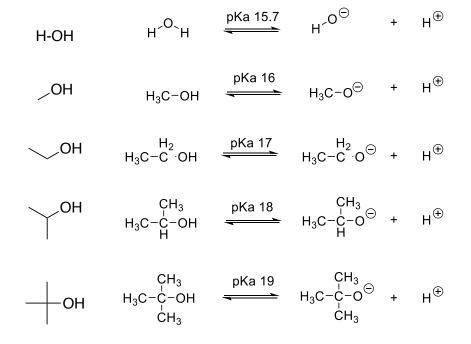
- They have high boiling and melting points, again due to their hydrogen bonding capabilities.

Look at the following comparisons:

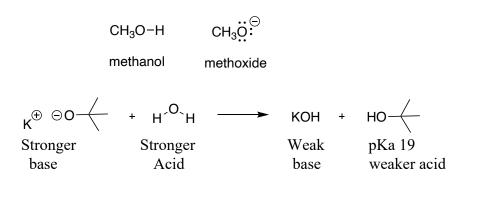

Name	Methanol	Ethane	Ethanol
Formula	CH ₃ OH	CH ₃ CH ₃	CH ₃ CH ₂ OH
Molecular Weight (g/mol)	32	30	46
Boiling Point (° C)	65	-89	78.5
State (at room temp)	liquid	gas	liquid

Ethane has almost the same molecular weight as methanol. However, the boiling point is much lower than methanol. Methanol molecules like to stick together via H-bonding while ethane molecules interact with each other via hydrophobic interactions.

O-H bond - easy to break


R-O bond - hard to break; always needs a strong acid to break and can proceed either $S_{\rm N}\text{-}1$ / $S_{\rm N}\text{-}2,$ or E1 / E2

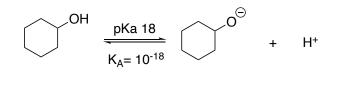
Miscibility of Alcohols with Water

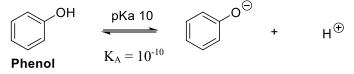


*butanol is soluble in H₂O but not miscible

Acidity of R-OH

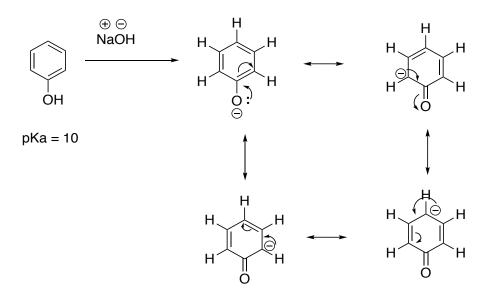
- pKa depends on conjugated base stability
- Harder to make a t-butoxide than methoxide. The alkyl group donates electron density to the C–O bond and destabilizes the negative charge (less favorable).

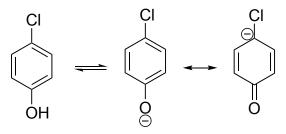

Methoxide vs. Isopropoxide:


 $\begin{array}{c} H & \bigoplus_{\substack{\leftarrow \\ H \\ \end{array}}} & H & \bigoplus_{\substack{\leftarrow \\ CH_3}} & \bigoplus_{\substack{\leftarrow \\ CH_3}} \\ \\ \end{array}$ Methoxide Isopropoxide Less stable

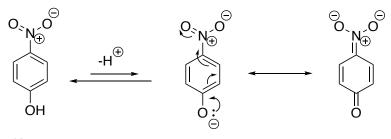
Alkyl groups donate electrons through single bonds, destabilizing the negative charge (Inductive Effect), therefore, isopropoxide is less stable than methoxide

- Inductive effect – donation or withdrawal through single bonds


Conjugated/Aromatic R-OH

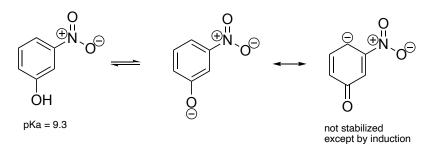

- More acidic than H₂O
- Resonance (resonance effect) takes electron density away from the O atom, resulting in stabilization of the negative charge.
- Resonance effect is strong through π system

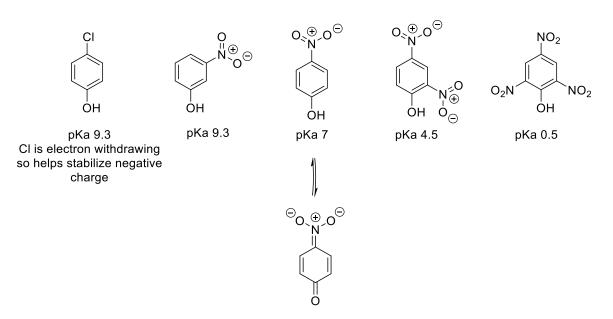
Example 1: Phenol


The alkoxide of phenol is a conjugated anion and is therefore much more acidic

Example 2: *p*-Chlorophenol

pKa = 9.3


Example 3: *p*-Nitrophenol


p-Nitrophenol is more acidic than phenol because on top of the resonance forms that phenol contains, *p*-nitrophenol also contains the above extra resonance form, making the proton on the alcohol even more acidic.

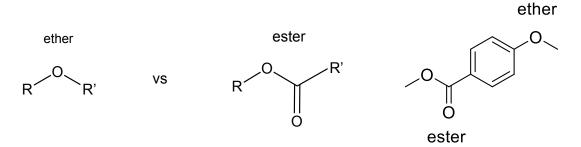
Example 4: *m*-Nitrophenol

Less acidic than *p*-nitrophenol because there is less stabilization of the negative charge. The negative charge is not conjugated with the nitro group double bond.

More examples:

- As you get more resonance possibilities, the negative charge is more spread out across the molecules, and is more stabilized, resulting in lower pKa (more acidic).

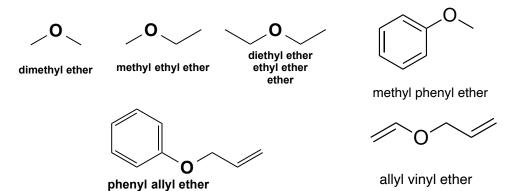
Ethers


- Unreactive to base
- Not miscible with H₂O

Recall:

Ethers are unreactive except in strongly acidic conditions (e.g. H₂SO₄) to undergo SN or E

FALL 2024

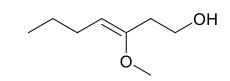

The difference between ester and ethers

Nomenclature:

- In the absence of other functional groups, name the two alkyl groups attached to the O and add the word "ether"

Examples:

In the presence of other functional groups, name ethers as a group, drop "yl" and add "oxy" as seen below:



methoxy

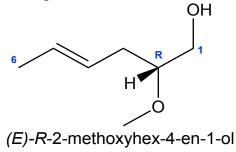
ethoxy

phenoxy

Example 1:

(Z)-3-methoxyhept-3-en-1-ol

- Alcohol (-OH) takes priority over other functional groups


- Number the longest C chain so as to give the OH group the lowest number possible

Example 2:

OH

2-phenoxyethan-1-ol or 2-phenoxy-1-ethanol

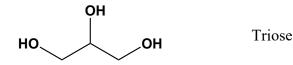
<u>Carbohydrates</u> (C_NH_{2N}O_N)

sugars, saccharides

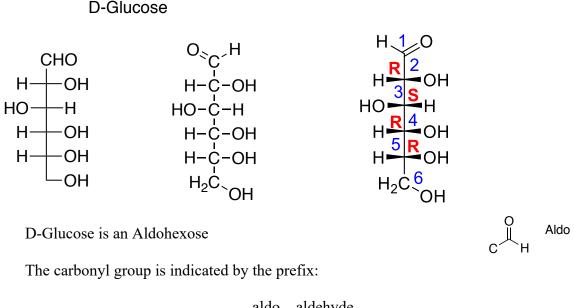
A familiar equation:

$$6 \text{ CO}_2 + 6 \text{ H}_2 \text{O} \xrightarrow{hv} \text{C}_6 \text{H}_{12} \text{O}_6 + 6 \text{ O}_2$$

- about $4 \ge 10^{11}$ metric tons of carbon dioxide is converted into glucose by plants the pressure of photosynthesis only uses 0.02% of the sums total energy on Earth


- the process of photosynthesis only uses 0.02% of the suns total energy on Earth

- the sugar produced is known as D-glucose, shown below in a Fischer Projection


Nomenclature of Sugars

General formula of sugars: C_NH_{2N}O_N (*approx.*) The number of carbons is indicated as follows: 3 carbon sugar (C_3) – triose 4 carbon sugar (C_4) – tetrose 5 carbon sugar (C_5) – pentose 6 carbon sugar (C_6) – hexose

Example 1: Glycerol

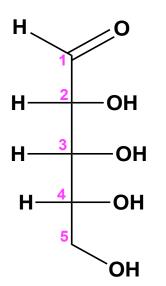
Example 2: D-Glucose

Note: The sugar backbone is numbered such that the C=O is assigned the lowest number possible.

Additionally, an allocation of D or L is given to indicate the stereochemistry of the highest numbered (last) stereocentre.

D sugar – highest numbered stereocentre in R configuration. L sugar – highest numbered stereocentre in S configuration.

Example 2: D-Fructose



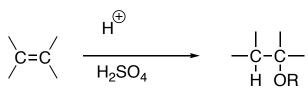
Based on the above nomenclature, D-Fructose is a **ketohexose** (ketone, 6 carbons)

The above structure is labelled as "D" because the R configuration occurs at carbon 5 (*note that carbon 6 is not a stereocentre*).

D-Fructose

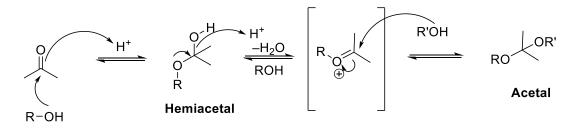
Example 3: D-Ribose

An aldopentose (aldehyde, 5 carbons long). At the highest numbered stereocentre (carbon 4) the stereochemistry is R.

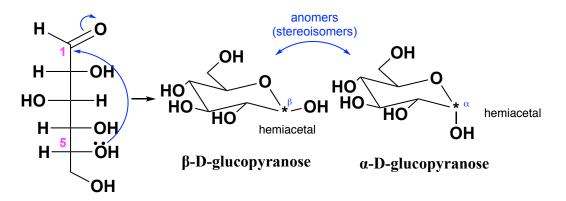

The name of this is D-ribose (found in RNA! – deoxyribose is in DNA)

These sugars can cyclize (form rings)

- 6-ring sugar is a pyranose
- 5-ring sugar is a furanose

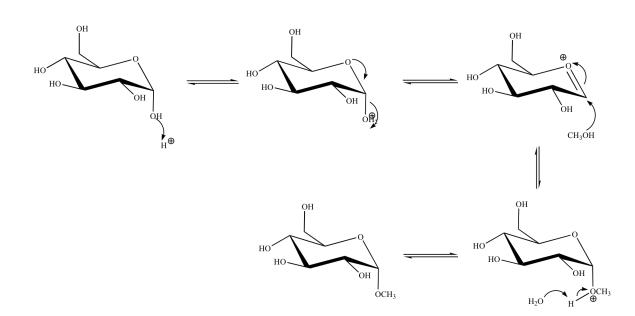

Hemiacetal and Acetal Formation

Recall addition reaction across a double bond (i.e., ether formation)

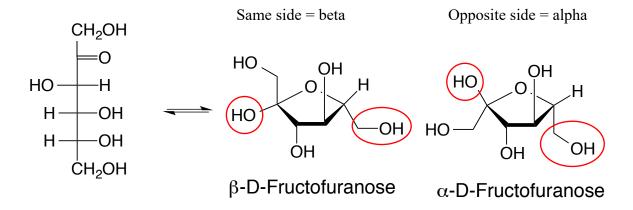


H-O-R

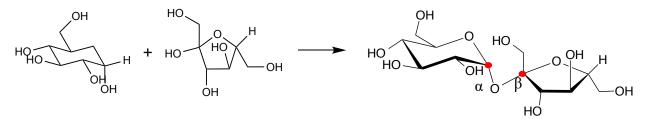
Similarly, addition reactions can be done on carbonyls (Ketones and Aldehydes) in the presence of an acid catalyst:




```
Example 4 - Glucose
```



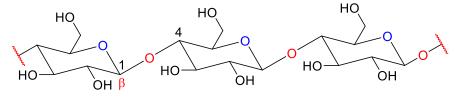
- This is a favored reaction. The sugar interconverts between the linear (or open) and ring form but the ring form (hemiacetal) is generally more favored.
- If OH at the anomeric carbon (C with 2 oxygens attached) is on same side of ring as CH₂OH then the configuration called β (beta) if on opposite side it is α (alpha)
- For glucose, the alpha and beta anomer are present in the same amount. However, for other sugars, the alpha anomer is generally more favored.
- 6-Membered sugar rings are called pyranose
- 5-Membered sugar rings are called furanose


Example 4 - Glucose

Example 5 - Fructose

Example 3 - Table Sugar (Sucrose):

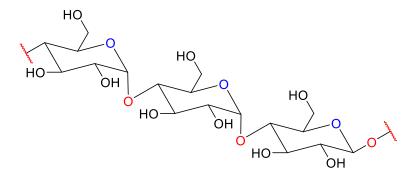
 α –D-Glucopyranosyl- β –D-Fructofuranoside


- Has 2 anomeric carbons
- Non-reducing sugar since it contains an acetal group and does not contain hemiacetals, aldehydes, or alpha-hydroxy ketone
- Can be broken down by the body to glucose and fructose monomer

Monosaccharides – simple sugars such as glucose and fructose – can't be converted to smaller sugars by chemical reaction (i.e., hydrolysis)

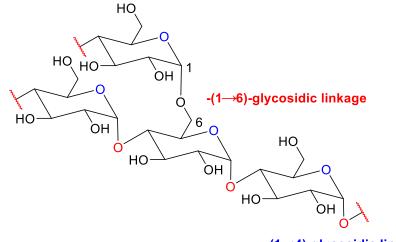
Polymers of Sugars

- Disaccharide: sugars that are composed of 2 monosaccharide units
- **Trisaccharide:** sugars that are composed of 3 monosaccharide units
- Tetrasaccharide: sugars that are composed of 4 monosaccharide units
- Oligosaccharides: sugars that are composed of 3 to 10 monosaccharide units
- **Polysaccharides:** long chain of carbohydrates containing more than ten (> 10) monosaccharide monomers.


Cellulose

 β -(1 \rightarrow 4)-D-Glucopyranoside polymer (Cellulose)

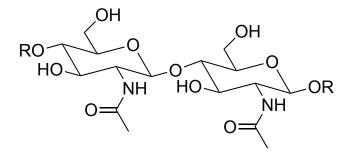
- Cellulose is a polysaccharide composed of D-glucose monomers linked via β-1,4 glycosidic linkages.
- Cellulose is a main component of cotton and paper
- Cellulose is also a raw material for producing cellulose nitrate which is the major component of smokeless powder used as a propellant in ammunition of firearms and artillery.
- β-linkages cannot be digested by most mammals


Starch (Amylose)

α -(1 \rightarrow 4)-D-Glucopyranoside polymer (Amylose)

- Amylose (accounts for 20% of the weight of starch) is a polysaccharide composed of D-glucose units linked via α-1,4 glycosidic linkages

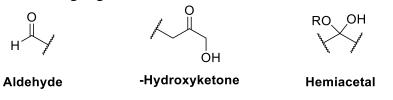
Starch (Amylopectin)



-(1->-4)-glycosidic linkage

Amylopectin: α -(1 \rightarrow 4) and α -(1 \rightarrow 6) linked D-glucopyranoside polymer

- Amylopectin is the main component of starch (80% dry weight)
- Amylopectin is characterized by branching via α -(1 \rightarrow 6)-glycosidic linkages in approximately every 25 glucose units along the main polymer chain.


Chitin

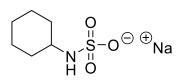
Other Examples and Information

Reducing Sugars

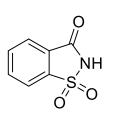
- Contains either an aldehyde, α-hydroxyketone, or a hemiacetal
- All aldoses are reducing sugars

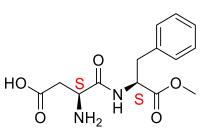
Non-reducing sugars

- Any sugars that do not contain any of the above functionality (i.e., glycerol) or an acetal group (i.e., sucrose)



Artificial Sweeteners


Sucralose


Sodium Cyclamate

Saccharine

Aspartame

