
Chem 164/261 Oct 25, 2011

Addition reactions of alkenes

- Follows Markovnikov rule

- The reverse reaction is called an elimination

Formally Anti-Markovnikov Addition of H-OH in opposite sense.

B₂H₆ – diborane behaves like BH₃

Eg 1.

Eg 2.

Overall anti-Markovnikov addition of water

$$H-BH_2$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_4
 H_2O_2
 H_2O_2
 H_3C
 $H_$

Reduction: process that adds electrons

Oxidation: process that removes electrons

Ozonolysis: cleavage of alkenes by ozone (O₃)

General reaction:

Eg.

formaldehyde name comes from formic acid, which comes from formica (ant):

Mechanism:

Sample question for practice: What is a possible structure for the starting material below $(C_{10}H_{16})$?

Are there other isomers that will give the same products for ozonolysis followed by Zn treatment?

Epoxidation – Oxirane formation

1) Epoxide formation (epoxidation) – Oxirane formation

$$C=C \xrightarrow{\begin{array}{c} O \\ R-C-O-OH \\ \end{array}} \begin{array}{c} O \\ C-C \end{array} + \begin{array}{c} O \\ R-C-OH \\ \end{array}$$

$$\begin{array}{c} O \\ C-C \end{array} + \begin{array}{c} O \\ R-C-OH \\ \end{array}$$

$$\begin{array}{c} O \\ C-C \end{array} + \begin{array}{c} O \\ R-C-OH \\ \end{array}$$

$$\begin{array}{c} O \\ C-C \end{array}$$

$$\begin{array}{c} O \\ C-C \end{array} + \begin{array}{c} O \\ C-C \end{array}$$

$$\begin{array}{c} O \\ C-$$

- Syn Addition
- Concerted reaction: all bonds break and form at the same time

Mechanism: