Mechanism of halogenation of CH₄:

 $CH_4 + X_2 \xrightarrow{hv} CH_3X + HX$ X = F, Cl, Br

$$: \overset{\land}{\text{CH}} \xrightarrow{\Delta} \text{CH}_{3} \xrightarrow{} 2: \overset{\land}{\text{CH}} \xrightarrow{} \text{initiation step}$$

$$: \overset{\circ}{\text{CH}} \xrightarrow{} + \overset{\circ}{\text{H}} \xrightarrow{\text{CH}_{3}} \xrightarrow{} H \overset{\circ}{\text{CH}} : + \overset{\circ}{\text{CH}_{3}} \xrightarrow{} H \overset{\circ}{\text{CH}} : + \overset{\circ}{\text{CH}_{3}} \xrightarrow{} H \overset{\circ}{\text{CH}} : + \overset{\circ}{\text{CH}_{3}} \xrightarrow{} H \overset{\circ$$

Note: above mechanism applies to other halogens (F, Cl, Br)

Further examples -

2,2,4-trimethylpentane

Stability of radicals:

Increases with alkyl substitution.

Alkyl groups are polarizable and donate electrons to electron deficient sites better than hydrogens. (This is called inductive effect.)

·CH ₃ <	·CH ₂ R	<	·CHR ₂ <	·CR ₃
methyl	primary		secondary	tertiary
radical	radical		radical	radical
(least stab	le)			(most stable)

Further Examples

Stability of radicals:

Increases with alkyl substitution.

Alkyl groups are polarizable and donate electrons to electron deficient sites. Inductive effect: through single bonds

More examples:

2, 5-dimethylhexane

Note that the bromine is furthest from the methyl groups due to destabilizing steric interactions.

Reactivity

Reactivity

 $F_{2} > Cl_{2} > Br_{2} > I_{2}$ $F \cdot + - C - H \longrightarrow F - H + - C \cdot H$ $Br \cdot + - C - H \longrightarrow Br - H + - C \cdot H$

 ΔH = -35kcal/mole Exothermic ΔH = +16kcal/mole

Endothermic

Br• > CI•	> F•	
most selective	least selective	
endothermic	exothermic	

Hammond Postulate

- The more exothermic a reaction, the more the transition state (TS) resembles the starting materials.
- The more endothermic a reaction, the more the TS resembles the product.

Generally:

- More reactive radical \rightarrow less selective radical
- less reactive radical \rightarrow more selective radical

Alkyl Halides = haloalkanes

Structure and Nomenclature

- 1) Find longest chain with largest number of branches
- 2) Number from end so as to give 1^{st} branch the lowest number
- 3) Name prefix with "Halo" (chloro, bromo, iodo, fluoro). Or name alkyl and add halide

$$1 2 3 5$$

Cl 4 6

2 -chloro -4-methylhexane

Fluorocyclopropane Cyclopropyl fluoride

look at atomic number

5-butyl-4-iodotetradecane

Isopropyl

2-Fluoropropane

2-Propylfluoride

Isopropyl Fluoride

2-Chloro-2-methylpropane

tert-Butyl Chloride

Neopentyl

Neopentyl Bromide

1-Bromo-2,2-dimethylpropane