CHEM 261 Nov 14, 2014

Review: E2

Review: E1

Zaitsev Rule – formation of most substituted double bond favoured in elimination reactions.

Limitations

Must have H on adjacent carbon – reaction below does NOT work due to lack of H that can be removed

Eg. 1)

Eg. 2)

Eg. 3)

Bicyclic Systems – require special attention:

Bridgehead

Bredt's rule – in bicyclic molecules no alkene to a brigehead carbon, if all bridges have ≥ 1 carbon and small rings (< 7). In top example one bridge has 0 carbons and alkene formation works.

Elimination of H-OH or H-OR (generally requires acid eg. H₂SO₄)

Eg.1) E1: Elimination

HO or RO are bad leaving groups however HO-H or RO-H are good leaving groups

Eg.2) E1: Elimination

Other examples:

$$H_3C$$
 H_3C
 H_3C

Both products are formed due to free rotation of the single bond of the carbocation.

Summary E1, S_N1 , E2 and S_N2

Particulars		E 1	$S_N 1$	E2	$S_N 2$
Stereospecific		X	X	*	*
Concerted		X	X	*	*
		1	1	2	2
Order of Reaction		[c-c]	[c-c]	[c-c][B]	[c-c][Nuc]
Strength of Nuc./Base		Weak Base	Weak Nuc.	Strong Base	Strong Nuc.
	Me	X	X	X	*
	1°	X	X	*	*
Substrate	2°	~	~	*	~
	3°	*	*	*	X

^{*-}Yes X-No