Chem 261 Sept 5, 2015

Purification

- 1) Physical State Separation
 - Distillation
 - Crystallization
 - Precipitation
- 2) Chromatography
 - Media + Adsorption

Chemical Analysis

- Qualitative Analysis
- Quantitative Analysis

Qualitative Test for Inorganic or Organic Compound

Qualitative: Determine if you have the compound of interest

Organic	Inorganic	
- Contains carbon	- No carbon	
- Low mp $<$ 200 °C, low bp	- High mp & bp	
- Burns frequently in air	- "Does not burn"	
- Soluble in non-polar solvents	- Soluble in H ₂ O	

THERE ARE MANY EXCEPTIONS!!!

E.g. Common table sugar is an organic molecule, however it dissolves in water.

Quantitative Analysis

Quantitative: How much of the compound of interest (quantity)
Amounts of atoms in compounds

Organic compound
$$O_2$$
 O_2 O_2 O_3 O_4 O_4 O_5 O_5 O_5 O_5 O_5 O_6 O_7 O_8 O_8 O_9 O_9

Note: Matter cannot be created or destroyed in a chemical reaction, therefore the amount of carbon in the CO_2 is equal to the amount of carbon in the starting sample.

Percent Composition

Weight of carbon (in sample) =
$$\underline{12 \text{ g/mol of C}}$$
 x $10.35 \text{ mg of CO}_2 = 2.82 \text{ mg of C}$
 44 g/mol CO_2

Weight of hydrogen =
$$\underline{2(1 \text{ g/mol of H})}$$
 x 3.42 mg of H₂O = 0.383 mg of H 18 g/mol of H₂O

Weight of oxygen =
$$4.34 \text{ mg} - (2.82 \text{ mg of C} + 0.383 \text{ mg of H}) = 1.14 \text{ mg of O}$$

Now one can calculate percentage composition:

% Composition:

%
$$C = Mass of carbon \times 100\%$$
 = $\frac{2.82 \text{ mg of } C}{4.34 \text{ mg}} \times 100\%$ = 65.1%

%
$$H = 0.383 \text{ mg of } H = 8.83\%$$

4.34mg

$$\% O = 100\% - 65.1\% - 8.83\% = 26.1\%$$

The empirical (and with additional data, molecular formula) can be determined from % composition

Determining the empirical experimental formula:

Definition: Empirical formula is the ratio of atoms to each other in a molecular formula

There are three steps to calculate the empirical formula:

- 1) Divide each percentage (%) by the atomic weight of the element → crude ratio
- 2) Divide each crude ratio by the smallest crude ratio → refined ratio
- Multiply the refined ratio by an integer value $(x2, x3, x4...) \rightarrow$ integral ratio

% Composition	Crude Ratio	Refined Ratio	Integral Ratio
65.1 % C	65.1 / 12.0 = 5.42	5.42 / 1.63 = 3.34	$3.34 \times 3 = 10$
	(% C / At Wt C)		
8.83 % H	8.83 / 1.01 = 8.76	8.76 / 1.63 = 5.39	$5.39 \times 3 = 16$
26.1 % O	26.1 / 16.0 = 1.63	1.63 / 1.63 = 1.00	$1.00 \times 3 = 3$

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Using this formula an empirical weight can be calculated.

C:
$$10 \times 12 = 120 \text{ g/mol}$$

H: $16 \times 1 = 16 \text{ g/mol}$
O: $3 \times 16 = 48 \text{ g/mol}$

$$C_{10}H_{16}O_3 = 184 \text{ g/mol}$$

Note: Suppose the molecular weight is given as 368 g/mol, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $C_{20}H_{32}O_6$. The molecular weight can be independently determined via mass spectrometry.

Gas Law: (Different kinds of units for pressure and volume can be used provided the value of the gas constant is adjusted to those units)

$$PV = nRT$$
 $P = Pressure in atm$

V = Volume in L

N = Moles

T = Temperature in $^{\circ}$ K; K and $^{\circ}$ C are the same size, but 0 K = - 273 $^{\circ}$ C

Standard conditions for temperature and pressure (STP)

old definition of STP used in this course

Standard pressure is 1 atmosphere, or 760 mmHg; standard temperature is 273 K 1 mol of gas occupies 22.4 L at STP. –

<u>Sample Question</u>: A certain amount of N₂ gas occupies a volume of 3 mL at 750 mmHg and room temperature (298 K). What volume it will occupy at standard pressure and temperature (STP)?

$$\begin{array}{lll} P_1 = 760 \text{ mmHg} & T_1 = 273 \text{ °K} & V_1 = ? \\ P_2 = 750 \text{ mmHg} & T_2 = 298 \text{ °K} & V_2 = 3 \text{ mL} \end{array}$$

Solve for V₁

$$V_1 = T_1 P_2 V_2 = (273 \text{ °K})(750 \text{ mmHg})(3 \text{ mL}) = 2.71 \text{ mL}$$

 $T_2 P_1 = (298 \text{ °K})(760 \text{ mmHg})$

Question: How many moles of N₂ is 2.71 mL at STP and what is its mass?

Note: 1 mole of an ideal gas occupies 22.4 L at STP.

$$2.71 \times 10^{-3} L \times \underline{1 \text{ mole}} = 1.21 \times 10^{-4} \text{ moles of N}_2$$

 $22.4 L$

$$1.21 \times 10^{-4} \text{ mol} \times 28 \text{ g/mol} = 3.4 \text{ mg of N}_2$$