Formal Charge

- Convention to keep track of charges -
- \sum (sum of) of formal charges = charge on molecule -

Rules

- Add number of protons in nucleus
- Subtract number of inner shell electrons
- Subtract number of unshared electrons
- Subtract $\frac{1}{2}$ of the number of shared outer shell electrons

Formal charge on N calculation

ex) ON

Nitrate

+7 protons in nucleus -2 (1s electrons) 0 (unshared electrons) $(1/2 \times 8) = -4 (1/2 \text{ unshared electrons})$ +1

For Double bonded oxygen:	For Single bonded oxygen (both):
+8 (number of protons)	+8 (number of protons)
-2 (1s electrons)	-2 (1s electrons)
-4 (unshared electrons)	-6 (unshared electrons)
$\frac{1}{2} \ge 4 = -2$ (1/2 of shared electrons)	$\frac{1}{2} \ge 2 = -1$ (1/2 of shared electrons)
0	-1

Nitrate

Overall Charge is -1

Formal charge on C:

This species is called methyl radical – not stable.

This species is called methyl anion and could be written as:

This species in methyl cation, and is even less stable than methyl anion.

Resonance Structures:

- Give different pictures of the same molecule, they are made by moving electrons and keeping the position of the atoms same.

Rules for good resonance structures

- 1) maintain inert gas configuration around each atom
- 2) avoid generation of additional charges
- 3) avoid like-charges on adjacent atoms

Eg. Hydrogen gas, H₂:

Violates rule 2 Violates rule 2

- they are all resonance forms but not necessarily good ones (accurate)
- H-H is the best resonance form
- Double headed arrow (\rightarrow) is used to indicate resonance forms

* this is called "arrow pushing" \rightarrow bookkeeping of electrons

Resonance structure:

1. nitrite anion (NO_2^{-})

The two resonance structures shown above are equally valid.

2. nitrate anion (NO_3)

The structures above are all equally valid, only one needs to be drawn.

3. $C_6H_4Cl_2$

Intermolecular forces: (forces present between molecules)

- Attractive intermolecular forces:
 - i) Hydrogen bonding strongest on per atom basis (eg. base recognition in forming DNA helix)
 - ii) Dipole-dipole interaction
 - iii) London forces (temporary dipole) weakest on per atom basis

Electronegativity:

- An atom's desire for electrons (negative charge).
- in Periodic table, electronegativity increases as you go from left to right (up to inert gases which are not electronegative) and as you go upwards
- Eg. Fluorine is the most electronegative atom (wants to gain the inert gas configuration of Ne)

Hydrogen bonding:

- need a lone pair of electrons
- need hydrogen directly attached to a very electronegative atom (F, O, N) for Hydrogen bonding between molecules of same type
- strongest intermolecular attractive force on a per atom basis

eg. H-O-H (water)

- oxygen is electronegative and it is sp³ hybridized
- leads to high boiling point and high melting point by self association

Dipole moment:

Eg. 1. Methane CH₄

- Non-polar (net-zero dipole)
- Gaseous
- Low BP -164 °C
- Low MP -182 °C
- 2. Methyl chloride, CH₃Cl, ClCH₃

- H and C have similar electronegativity values (non-polar bond)
- Cl is very electronegative due to the fact that it only needs one electron to get inert gas configuration. (C-Cl and C-F are polar bonds)

- Electron density is pulled towards chlorine atom – so a net dipole toward chlorine atom – net dipole is the vector sum of individual bond dipoles

* dipoles in different molecules tend to line-up temporarily with each other (partial positive / negative charge on the molecule) – causes molecules to "stick" to each other

3. Dichloromethane, methylene chloride, CH₂Cl₂

- Liquid at room temperature BP 40 °C MP 95 °C
- More polar than methyl chloride
- 4. trichloromethane, chloroform, CHCl₃

- More polar than methylene chloride BP 61 $^{\circ}$ C MP 64 $^{\circ}$ C
- 5. tetrachloromethane, carbon tetrachloride, CCl₄ (TOXIC)

- net-zero dipole

- Non-polar molecule
- Has temporary dipoles and as chlorine is polarizable (see below), high BP

London Forces (temporary dipole):

- also know as dispersion forces
- Principal effect in hydrophobic interaction

