
Resonance Structures:

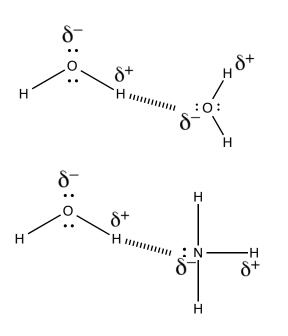
1. Carbonate anion (CO_3^{2-})

The structures above are all equally valid. Only one needs to be drawn.

2. 1,2-Dichlorobenzene

Electronegativity:

- An atom's desire for electrons (negative charge).
- On the periodic table, electronegativity increases as you go from left to right (up to inert gases which are not electronegative) and as you go from down to up
 - i.e. Fluorine is the most electronegative atom (wants to gain the inert gas configuration of Ne)
- It influences acidity of H's attached, as well as the intermolecular forces between molecules.


Intermolecular Forces: (forces present between molecules)

- Attractive intermolecular forces:
 - i) Hydrogen bonding strongest on per atom basis (e.g. base recognition in forming DNA helix)
 - ii) Dipole-dipole interaction
 - iii) London forces (temporary dipole; hydrophobic bonding) weakest on per atom basis

Hydrogen Bonding:

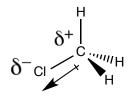
- Donors: H attached to a very electronegative atom (N, O, F, Cl)
- Acceptors: A lone pair of electrons
- Strongest intermolecular attractive force on a per atom basis

e.g. H-O-H (water)

- Oxygen is electronegative and it is sp³ hybridized
- The partial positive charge on H and the partial negative charge on O lead to their attraction
- Results in high boiling point and high melting point by self-association
- HF, H₂O and NH₃ form hydrogen bonds
- Water is a liquid at RT while ammonia is a gas
- Oxygen is more e-neg than nitrogen, so the protons on water have a higher positive partial charge than the protons on ammonia
- In an ammonia solution, water would be the hydrogen bond donor and ammonia would be the acceptor
- Water dissolves ammonia very well up to 18M

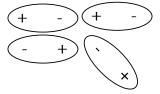
Dipole-Dipole Interactions:

Dipole drawing convention:

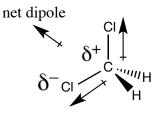

 δ^+ δ^-

Partial positive charge is the "plus" end, partial negative charge is the arrow head

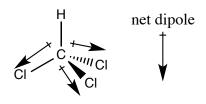
1. Methane; CH₄

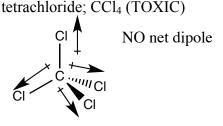


- C and H have ~same electronegativity
- Non-polar (net-zero ~dipole)
- Gaseous
- Low BP -164 °C
- Low MP -182 °C
- 2. Chloromethane, methyl chloride; CH₃Cl



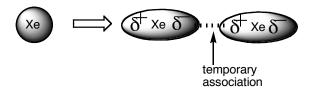
- H and C have similar electronegativity values (non-polar bond)
- Cl is very electronegative due to the fact that it only needs one electron to get inert gas configuration.
- Electron density is pulled toward the chlorine atom, creating a net dipole toward chlorine atom. A net dipole is the vector sum of individual bond dipoles.


Dipoles in different molecules tend to line-up temporarily with each other (partial positive / negative charge on the molecule) – causes molecules to "stick" to each other


3. Dichloromethane, methylene chloride; CH_2Cl_2

- Liquid at room temperature BP 40 $^{\circ}$ C MP 95 $^{\circ}$ C
- More polar than chloromethane
- Not miscible with water
- 4. Trichloromethane, chloroform; CHCl₃

- More polar than methylene chloride BP 61 $^{\circ}$ C MP 64 $^{\circ}$ C
- 5. Tetrachloromethane, carbon tetrachloride; CCl₄ (TOXIC)



- Non-polar molecule (net-zero dipole)
- Has temporary dipoles since chlorine is polarizable (see below), BP ~77
- Historically used as a dry cleaning fluid

London Forces (Temporary Dipoles):

- Also know as London dispersion forces
- Distortion of filled outer shell electrons
- Principal effect in hydrophobic interactions

Atoms	Boiling Point	
Не	-269 °C	Small atom/ Low polarizability
Ne	-246 °C	
Ar	-186 °C	
Kr	-153 °C	\checkmark
Xe	-108 °C	Large atom/ High polarizability

C₉H₂₀ hydrophobic bonding

CH₄ associates with CH₄ due to London forces

• The larger the atom (expanded electron density), the easier the formation of temporary dipoles