CHEM 261 Oct 26, 2015

Optical Rotation:

- Optical rotation is a physical property
- Pure enantiomers rotate in equal but opposite directions

enantiomers

D-carvone L-carvone

Absolute configuration of D-carvone is S:

R/S is nomenclature (convention), while d and l optical activity is a physical property. They cannot be easily correlated theoretically (there is no way reliable method a priori to predict that a d or l compound would have certain R S stereogenic center).

Optical purity (experimental) = enantiomeric excess = e.e. (theoretical)

 $[\alpha]_D$ = Absolute rotation of a compound.

Optical purity is the excess of one enantiomer over the other

Calculating Optical Purity

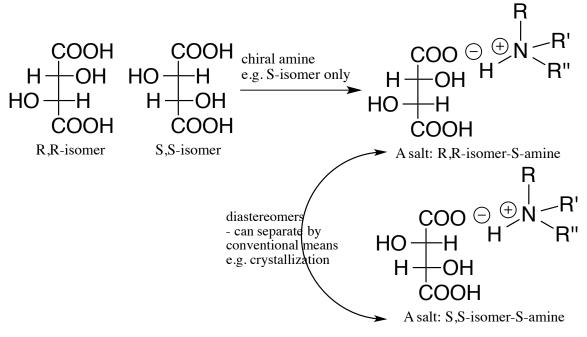
For this example for D and S-carvone, assume the pure S enantiomer has +100° rotation

For S isomer: $[\alpha]_D = +100^\circ$ For R isomer: $[\alpha]_D = -100^\circ$

Mix 1:1 R + S enantiomers α = measured = 0°

Racemate = racemic mixture = 50:50 mixture of enantiomers

<u>R</u>	<u>S</u>	Rotation (°)	Optical Purity (%)
100 %	0 %	-100 °	100 %
0 %	100 %	+100 °	100 %
50 %	50 %	0 °	0 %
25 %	75 %	+50 °	50 %


Separation of Enantiomers:

Resolution: Separation of enantiomers.

- For resolution, a chiral agent is necessary
- Physical separation (crystallization of specific enantiomer)
- Conversion to diastereomers, which can be separated
 - o e.g. Make salts by acid-base reaction

Tartaric acid:

The enantiomers of tartaric acid can be separated by forming diastereomeric salts with a chiral amine, such as morphine

