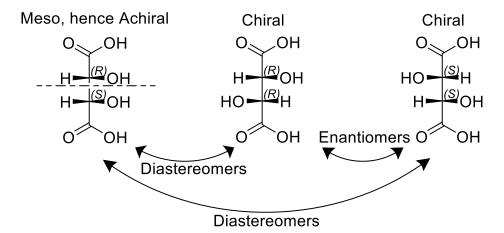

CHEM 261 Oct 23, 2015

Review: Chirality in natural products.


Androstenol (androst-16-ene-ol):

- Male sex pheromone also present in truffles
- ~50% of humans can smell it (genetically determined)
- Seven stereogenic centers labeled in red

Tartaric Acid:

Fischer Projection – A convention for drawing organic molecules in which horizontal groups are understood to point toward you, and vertical groups backward.

Meso Compounds: Have stereogenic/chiral centers but are achiral. R,S-tartaric acid above has an internal plane of symmetry.

Another example of a meso compound:

$$\begin{array}{c|c} O & H & O \\ \hline H & H &$$

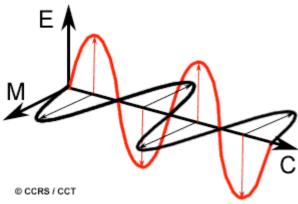
All compounds with an internal plane of symmetry are achiral (not chiral).

However if one of the chiral centers were switched:

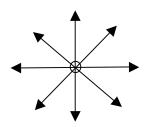
- A set of enantiomers is generated – each of these is a diastereomer of the meso isomer

Physical Properties of Enantiomers

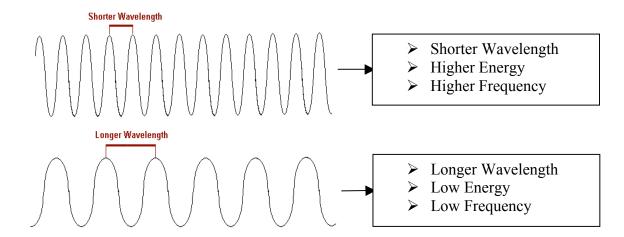
- Same physical properties with achiral agents or procedures
 - o Melting point, boiling point, solubility in achiral solvents
- Enantiomers behave differently with chiral agents
- Diastereomers have different physical properties (m.p, b.p, density, solubility)


Optical Activity

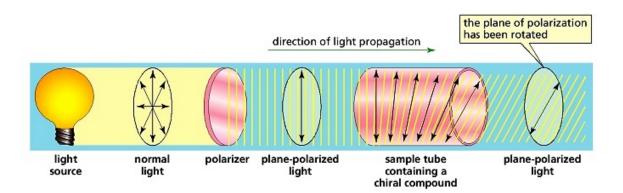
- Rotation of polarized light
 - Dextrorotatory (right) (+)
 - o Levorotatory (left) (-)
- Pure enantiomers show equal but opposite rotation


Light: Electromagnetic radiation

Light
$$\rightarrow$$
 E = $hv = \frac{hc}{\lambda}$


$$\upsilon = \text{frequency} \qquad E = \text{energy} \qquad h = P \text{lanck's constant} \qquad \lambda = \text{wavelength}$$

 $c = \text{speed of light} \qquad \lambda = \text{valength}$



Light has an oscillating electric field (red) combined with a magnetic field (black)

End on view of vector components of normal light. It is possible to polarize light and remove some of those vectors.

Optical Rotation

 $[\alpha]_D$ = Absolute rotation at the D line of sodium (589 nm)

$$[\alpha]_D = \frac{\alpha}{c \cdot l}$$

 α = measured rotation (°) c = concentration (mol/L) l = path length (cm) D = D-line of sodium light $[\alpha]$ = absolute rotation

Degrees (°) = +: Clockwise -: Anticlockwise