Substitution vs. Elimination reactions:

 $S_{\text{N}}1$ and $S_{\text{N}}2$ compete with E1 and E2

Substitution (S _N 1 and S _N 2)	Elimination (E1 and E2)
Replace leaving group	Form an alkene
Use a nucleophile:	Use a base:
- Attacks electrophilic carbons (δ^{+}) or	- Attacks an H⁺
other electrophilic centers.	

Examples:

1.

Require acid to proceed as OCH_3 is a poor leaving group

2.

Limitations

-The carbon is too crowded to undergo a substitution reaction (sterically hindered) - No adjacent H to favored a dehydrohalogenation

Bret's rule: No C=C can be formed to a bridge head if all bridges are >0 and small size rings.

Very unstable as the C=C geometry is constrained (angles lower than 120°)

Norbonadiene

Very toxic norbonadiene derivative