Gas Law: (different kinds of units for pressure and volume can be used provided the value of the gas constant is adjusted to those units)

PV = nRT P=Pressure in mmHg (or atm) V=Volume in L n=moles T=temperature in °K; °K and °C are same size but 0 °K (absolute zero) = minus 273 °C

R is a constant $\frac{0.082 \text{ L}^{\circ} \text{ atm.}}{\text{Mol} \cdot ^{\circ}\text{K}}$

Conceptual example: Ammonia gas (NH₃)

MW: 17 g/mol [(14 for N) + (3 for 3 x H)]

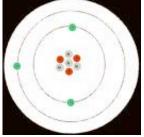
Liquid state occupies ~15 mL but gaseous state occupies ~22.4 L!

Sample Question- What volume will 3 mL of N₂ gas occupy at standard pressure and temperature (STP)?

Standard Pressure is 1 atmosphere (atm) or 760 mm Hg; Standard temperature is 273 °K

$\frac{P_1 V_1}{P_2 V_2} = \frac{nRT_1}{nRT_2}$	divide equations to give	$\frac{\underline{P}_1 \underline{V}_1}{\underline{P}_2 \underline{V}_2} = \frac{\underline{T}_1}{\underline{T}_2}$
	_	

 $\begin{array}{ll} P_1 = 760 \mbox{ mmHg} & T_1 = 273 \mbox{ }^{\circ} \mbox{K} \\ P_2 = 750 \mbox{ mmHg} & T_2 = 298 \mbox{ }^{\circ} \mbox{K} & V_2 = 3 \mbox{ mL} \end{array}$


Solve for V₁

$$V_{1} = \frac{T_{1}P_{2}V_{2}}{T_{2}P_{1}} = \frac{(273 \text{ °K})(750 \text{ mmHg})(3 \text{ mL})}{(298 \text{ °K})(760 \text{ mmHg})}$$

= 2.71 mL is the answer

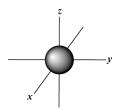
Atomic theory:

- Niels Bohr (1913) - won his Nobel prize for his atomic theory - NOT fully correct

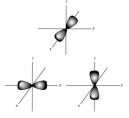
- the neutrons and protons occupy a dense central region called the nucleus
- the electrons orbit the nucleus much like planets orbiting the Sun

- De Broglie (1924) – his 12 page PhD thesis won him the Nobel prize - he proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave-particle duality)

- the orbitals of an atom are described by wave functions (mathematical equations) – they have no direct physical meaning but when squared, provide electron density


- ψ (psi) = orbital - ψ^2 = (orbital)² = electron density distribution

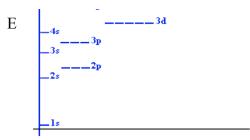
Note. Often the electron density distribution is called an "orbital" by chemists


For hydrogen (H) atom: >95% of electron density is found within $1\text{\AA} = 10^{-8}$ cm of the nucleus

Orbitals:

1. s-orbital - spherical shaped (electron density)

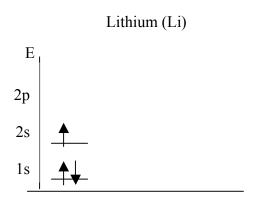
2. p-orbital - dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

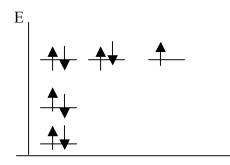

Basic principles:

- like charges repel each other
- unlike charges attract each other
- atoms want to be in inert gas electron configuration (isoelectronic with inert gas)

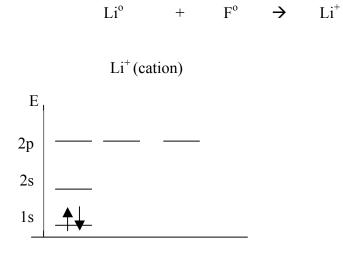
Atoms	Protons (+)	Neutrons	1s electrons	2s electrons	2p electrons
Н	1	0	1		
He	2	2	2		
Li	3	3	2	1	

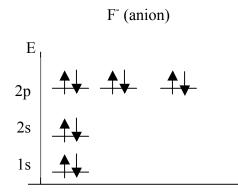
Abbreviation of electron - e


Energy (E) level diagram for an atom:


Rules for filling electron – AUFBAU rule (Build up Principle):

- add electron to lowest energy orbital available
- Pauli Exclusion principle: maximum two electrons per orbital (each having opposite spin quantum number)
- fill 1 electron into each orbital of same energy (degenerate orbital), then add second electron Hund rule


- all elements want inert gas configuration (e.g. Ne) and from above diagrams both Li and F are unhappy with unfilled orbitals (not in inert gas configuration)

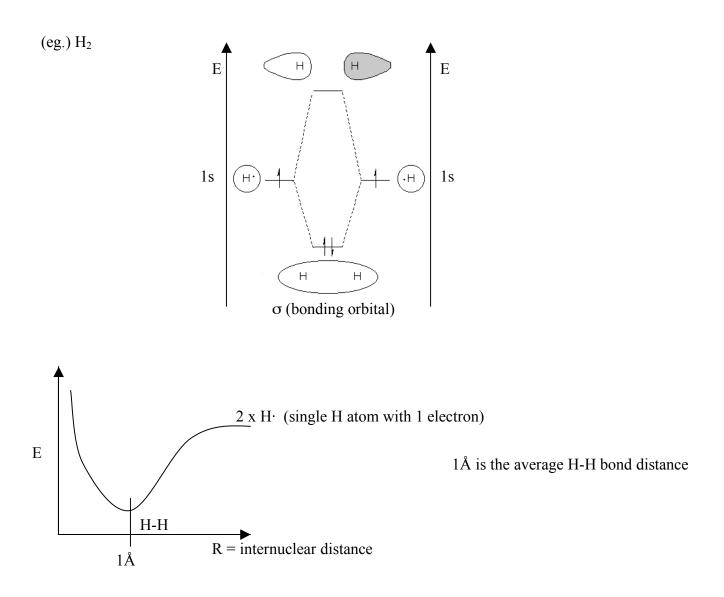

Bonding - Ionic

- isoelectronic = same electron configuration
- Li could lose 1e⁻ from 2s orbital to be isoelectronic to He (as Li⁺) and F could gain 1e⁻ to be isoelectronic to Ne (as F⁻)

F

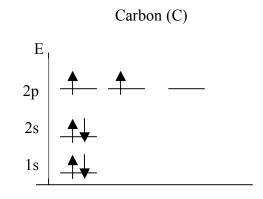
+

- in space these ions would be attracted to each other
- in solution they might be separated due to solvation (e.g. water would surround)
- in solid, they would form a crystalline solid structure



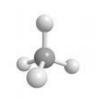
Bonding – Covalent and hybridization

Energetics of Forming Bonds


Linear Combination of Atomic Orbitals (LCAO)

- Gives molecular orbitals (MO)
- Overlap of s atomic orbitals (AO) \rightarrow gives sigma(σ) MO (cylindrical symmetry)
- Difference between AO and MO → AO present on an atom while MO present between two atoms when bond is formed.
- In terms of strength $\rightarrow \sigma$ bond is stronger than a π bond. But a double bond is stronger than a single bond because double bonds contain two bonds (σ -bond + π -bond).

Electronic configuration of carbon (C):


- atomic number = 6_
- atomic weight = 12 (also has 6 neutrons) -
- _
- other isotopes of carbon $-{}^{13}C (6p^+, 7n)$ is a stable isotope, 1.1 % natural abundance $-{}^{14}C (6p^+, 8n)$ is radioactive, $t_{1/2} = 5700$ yrs, ${}^{14}C$ dating of organic material

- need to gain or lose 4e⁻ to get inert gas configuration – but this gives unfavourable charge buildup:

- C^{4+} isoelectronic with He
- C⁴⁻ isoelectronic with Ne
- so, carbon makes 4 bonds to share 4e⁻ (covalent bonding)

Methane, CH₄:

- tetrahedral geometry
- for any 2 bonds electron density is equidistant from nucleus
- four covalent bond between the carbon atom and the hydrogen atoms
- the angle between two H-atoms = 109°