London Forces (temporary dipole):

- also know as dispersion forces
- Principal effect in hydrophobic interaction

Hydrophobic interaction: - pentane can develop a similar dipole to that seen for Xe

- two pentane molecules have a small attraction to one another at room temperature (hydrophobic interaction)
- This can become a very strong effect with multiple interactions of this type

Reactivity:

Reactants (starting material): C_5H_{12} and O_2 Products: CO_2 and H_2O

 E_a : activation energy $\Delta E = \Delta G$: Gibbs free energy (enthalpy) change for the reaction * this reaction is an exothermic reaction, heat is released during reaction

- ΔG = change in energy of system or change in Gibbs free energy.

 $\Delta G = -RTlnK_{eq}$ $R = gas \ constant = 0.082 \ \underline{L \cdot atm} \\ mol \cdot K$ $T = temperature \ in \ ^{o}K$ $\Delta G = change \ in \ energy \ of \ system \ (determines \ equilibrium)$ $E_a = activation \ energy \ \rightarrow \ determines \ rate \ of \ reaction$

 $A + B \longrightarrow C + D$

 K_{eq} = equilibrium constant = [C][D] [C] = concentration of compound C [A][B]

Endothermic Reaction

Transition state (TS) = bonds partially made/broken

The transition state is the point of highest energy on the diagram.

The transition state is **<u>not</u>** an intermediate.

Reaction proceeding through an intermediate

Review

Exothermic $\Delta G = Negative$

Endothermic $\Delta G = Positive$

Bond Energy

Bond	Bond Energy (kcal/mol)
H-C	99
H-O	111
C-C	83
C=O	179
O=O	119

Ex)
$$CH_4 + 2 O_2 \xrightarrow{\Delta} CO_2 + 2 H_2O - Exothermic reaction (releases Energy (E))$$

 $\Delta E_{reaction} = \Delta E_{SM} \text{ - } \Delta E_{pdt}$

For CH ₄ :	4 x C-H bor	$ds = 4 \times 99$	= 396 kcal/mol	$\Delta E_{SM} = sum of bonds$
	2 x O=O	= 2 x 119	= <u>238 kcal/mol</u>	broken (enthalpy)
	ΔE_{SM}		= 634 kcal/mol	

For products:	2 C=O =	$2 \ge 2 = 358 \text{ kcal/mol}$	ΔE_{pdt} = sum of bonds formed
	4 H-O =	$= 4 \times 111 = 444 \text{ kcal/mol}$	
	ΔE_{pdt}	= 802 kcal/mol	

 $\Delta E_{reaction} = 634 \text{ kcal/mol} - 802 \text{ kcal/mol} = -168 \text{ kcal/mol}$ (exothermic reaction, energy released)

Acids - Bases

• An acid donates proton (H^+)

• A base accepts a proton

Ex

HCI \longrightarrow H⁺ + CI⁻ NaOH \longrightarrow Na⁺ + OH⁻

HCI + NaOH → NaCI + H-OH

- Lewis
 - An acid accepts a pair of electrons
 - A base donates a pair of electrons

Examples of Lewis acids

 H^+ AICl₃ BF₃

Definition

$$H \xrightarrow{\frown} A \qquad H^{\oplus} + \xrightarrow{\bigcirc} A \qquad K_{eq} = K_a = \underbrace{[H^+][A^-]}_{[HA]} \qquad K_a = acidity \ constant$$

Ex #1)

H-CH₃
$$\longrightarrow$$
 H⁺ + CH₃⁻
 $K_a = [H^+][CH_3^-] = 10^{-46}$
[HCH₃]
 $pK_a = -logK_a = 46$

"pKa of Ammonia" in biological system

$$H_{-N-H} \xrightarrow{H} H_{N-H} + H^{\oplus}$$

$$H_{-N-H} \xrightarrow{H} H_{H} + H^{\oplus}$$

$$H_{H} + H_{H} + H^{\oplus}$$
Ammonium Cation $pK_a = 9.3$

Ex #3)

H-O-H
$$\longleftrightarrow$$
 H + \bigcirc
H +

Leveling Effect

Ex) H-CH₃ 🚤 → Na⁺**:**CH⁻₃ Na⁺ NH⁻₂ + H-NH₂ + Stronger Acid Weak Base Stronger Base Weak Acid Na⁺:CH⁻3 H₂O + $H-CH_3$ NaOH + pKa=16 pKa = 46Stronger Acid Weaker Acid

NEXT SECTION : ALKANES

Nomenclature

Learn Names of First 20 Straight Chain Alkanes

Hydrocarbons – Contain C and H

- Alkanes contain only single bonds (C-H, C-C)
- Alkenes = Olefins C=C
- Alkynes = Acetylenes $C \equiv C$

<u>Alkanes</u>

- All carbons are sp³ hybridized (bond angle of 109°)
- Held together by London (dispersion) forces

Ex #2) C_2H_6 , ethane

$$\begin{array}{cccc} H & H & H \\ H & H \\ H & H \end{array} \qquad Bp = -161^{\circ}C \qquad H - C - C - H \\ H & H \\ H & H \end{array} \qquad Bp = -88^{\circ}C$$

	CH_4	H_4C	CH ₃ -H	C_2H_6	CH ₃ -CH ₃	H ₃ C-CH ₃
--	--------	--------	--------------------	----------	----------------------------------	----------------------------------

Ex #4) C_4H_{10} , butane

n-Butane: normal straight chain butane

Ex #5) C₄H₁₀, isobutane

- Isomers (structural or constitutional) are different compounds that have same molecular formula. They have different physical properties (e.g. mp, bp, odour, biological effects)

Iso	-	meros
same	-	parts