Definitions

- Chemistry: Study of matter
- Organic Chemistry: Study of compounds containing carbon
- Atom: Is the smallest possible particle that defines a complete chemical element
- Molecules: Atoms connected in a particular arrangement
 - Changing the arrangement or connections changes the molecule and its physical properties.
- Compound: Collection of molecules of the same type
 - Water (H₂O), Cholesterol (27 carbons, white crystalline powder, average male contains 80g)
- Atomic Number: number of protons in nucleus of atoms
- Atomic Weight: mass of protons and neutrons
- Molecular Weight (MW): mass of atoms in molecule
 - Hydrogen = H, Atomic number = 1, 1 proton = $p^+ = (1H^+)$
 - Deuterium = D or d, Atomic number = 1, 1 proton and 1 neutron, Atomic Weight = 2 is an Isotope of Hydrogen
 - Tritium = T, Atomic number = 1, 1 proton and 2 neutrons, Atomic Weight = 3, radioactive isotope of hydrogen (half-life = 12.2 years)

Mole Concept

- 1 mole = 6.02×10^{23} (Avogadro's number) (can be atoms, molecules etc)
- 1 mole H = 1 g
- $H_2O: MW = [(2 \times 1 \text{ g/mol})H + (1 \times 16 \text{ g/mol})O] = 18 \text{ g/mol}$
- 18g of H₂O is 6.02×10^{23} molecules = 1 mole of H₂O or 6.02×10^{23} molecules of water

Typical Molecule

- A few Angstroms (Å) in length
- 1 Å = 10^{-8} cm

Example: cholesterol is 18 Å across. If you lined all of the cholesterol molecules in a 80g bottle end to end it would wrap around the earth roughly 5,000,000 times.

Purity of Compounds

- 1 mole of H_2O (6.02 x 10^{23} molecules) = 18g then add 1 x 10^6 other molecules (eg. sugar) the purity of the water would be 99.999 999 999 999 999% pure.
- Purity: A pure compound shows no change in physical properties upon attempts to further purify. (purity is a relative term)

Physical Properties

- Defined by chemical structure.
- Melting point (mp) and Boiling point (bp): Each compounds has a characteristic mp and bp.
- Biological properties: Taste, appearance, odour
- Density (g/cm^3) .
- Absorption of radiation.

- Solubility

Chemical Analysis

- Qualitative Analysis
- Quantitative Analysis

Qualitative Test for Inorganic or Organic Compound

- Qualitative: Determine if you have the compound of interest.

Organic	Inorganic	
- Contains carbon	- No carbon	
- Low mp $< 200 ^{\circ}\text{C}$	- High mp	
- Burn frequently	- "Does not burn"	
- Soluble in non-polar solvents	- Soluble in H ₂ O	

THERE ARE MANY EXCEPTIONS !!!

Quantitative Analysis

- Quantitative: How much of the compound of interest (quantity).

Organic compound
$$\xrightarrow{O_2}$$
 CO_2 + H_2O H_2O + H_2O
MW (g/mol) = 44 18
Example:
Compound contains \longrightarrow 10.35 mg 3.42 mg 0 mg
C, H, O (4.34 mg)

Note- Matter cannot be created or destroyed in a chemical reaction, therefore the amount of carbon in the CO_2 is equal to the amount of carbon in the starting sample.

Weight of carbon (in sample) = $\frac{12 \text{ g/mol of C}}{44 \text{ g/mol CO}_2}$ x 10.35 mg of CO₂ = 2.82 mg of C

Weight of hydrogen = $\frac{2(1 \text{ g/mol of H})}{18 \text{ g/mol of H}_2\text{O}}$ x 3.42 mg of H₂O = 0.383 mg of H

Weight of oxygen = 4.34mg – (2.82 mg of C + 0.383 mg of H) = 1.14 mg of O

Now one can calculate percentage composition

% Composition

% C = <u>Mass of carbon</u> = <u>2.82mg of C</u> = 65.1% Mass of sample 4.34mg % H = <u>0.383 mg of H</u> = 8.83% 4.34mg % O = 100% - 65% - 8.83% = 26.1%

The empirical can be determined from % composition.

Determining the empirical experimental formula:

- Definition: empirical formula is ratio of atoms to each other in a molecular formula
- Three steps to calculate the empirical formula:
 - i) divide each percentage (%) by the atomic weight of element \rightarrow crude ratio
 - ii) divide all crude ratio by the smallest crude ratio \rightarrow refined ratio
 - iii) Multiply the refined ratio by an integer value to get integral ratio

% Composition	Crude ratio	Refined ratio	Integral ratio
65.1 % C	65.1 / 12.0 = 5.42	5.42 / 1.63 = 3.34	$3.34 \ge 3 = 10$
8.83 % H	8.83 / 1.01 = 8.76	8.76 / 1.63 = 5.39	5.39 x 3 = 16
26.1 % O	26.1 / 16.0 = 1.63	1.63 / 1.63 = 1.00	$1.00 \ge 3 = 3$

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Using this formula an empirical weight can be calculated.

C $10 \times 12 = 120$ g/mol H $16 \times 1 = 16$ g/mol O $3 \times 16 = 48$ g/mol

 $C_{10}H_{16}O_3 = 184 \text{ g/mol}$

Note: suppose the molecular weight is given as 368 g/mol, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $C_{20}H_{32}O_6$.