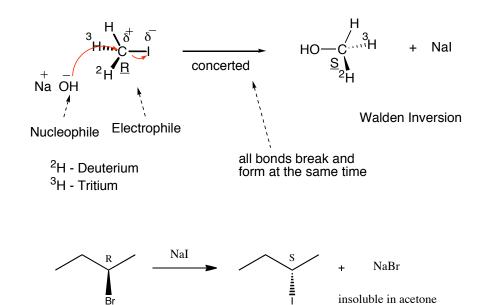

Substitution Reactions – 2 types: S_N1 and S_N2

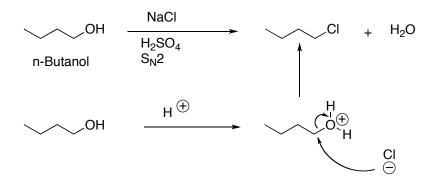

S_N2 reactions:

- S = Substitution
- N = nucleophilic
- 2 = bimolecular reaction (rate of reaction depends on 2 reagents)
 - stereospecific reaction -
 - inversion of configuration
 - concerted reaction
 - rate depends on two reagent concentration: [Nu] and [SM]
 - favored for primary 1° carbons

Br

Eg.

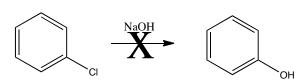
insoluble in acetone


Leaving group ability Worst

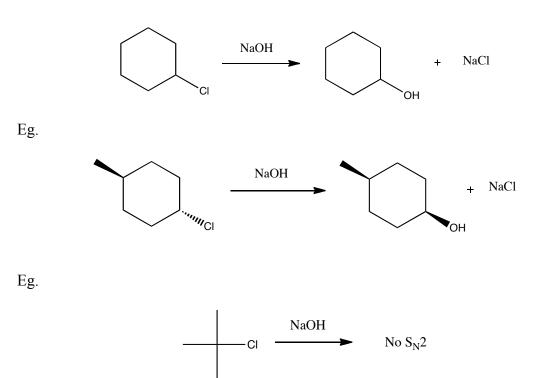
$$\begin{array}{cccc} \mathsf{F} & \mathsf{OH} & \mathsf{OR} & \mathsf{NR}_2 \\ \boxdot & \boxdot & \boxdot & \boxdot \end{array} \end{array}$$
 Never

Possible Leaving Groups – ACID required

0´ ^H	0 ^{- H}	(Need acid)
Ĩ H	Ř	

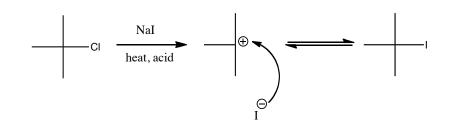

Eg.

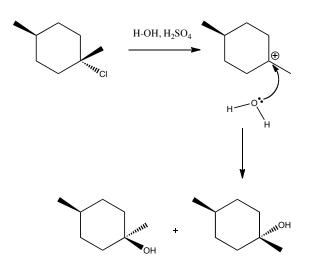
Excellent to Good Leaving Groups


The order of halide leaving group ability is due to solvation and size.

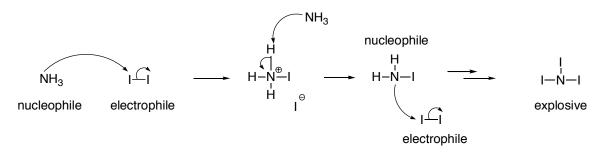
very good

poor


 $S_N 2$ never occurs at double bonds.



S_N1 reactions - Substitution Nucleophilic Unimolecular


- rate depends on 1 concentration: [SM] -
- stepwise (not concerted) -
- carbocation intermediate not stereospecific -
- -

Eg.

Demo:

 $S_N \mathbf{1}$

-Best if 3° carbocation can form -Never on 1° alkyl halides -Leaving groups – same as S_N2

OR and OH work if strong acid present HOR and HOH are leaving groups

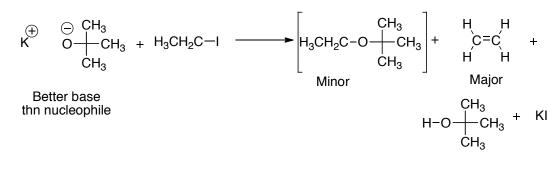
S_N1 and S_N2 can compete with E1 and E2 (alkenes formed)

Base :
Nucleophile :

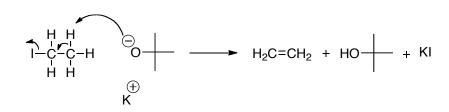
For elimination

For substitution

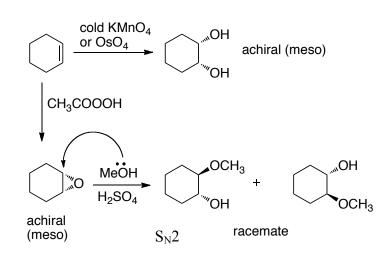
 \bigcirc \vdots \bigcirc -H Can be a base and attach to H $^{\textcircled{+}}$ Can be a nucleophile and attach to $-\overset{|}{C}$ \bigcirc


How can you tell which?

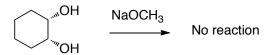
 \bigcirc OH small → Good S_N \bigcirc O-CH₃ \bigcirc CH₃ O + CH₃ large → Good E CH₃


Eg.

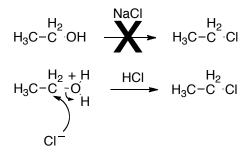
$$^{+}_{Na}$$
 $^{-}_{OH}$ + H₃CH₂C−I $^{-}_{S_N2}$ H₃CH₂C-OH + Nal

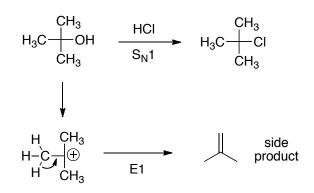

Eg.

Eg.



<u>Review</u>




Eg.

Eg.

Eg.

