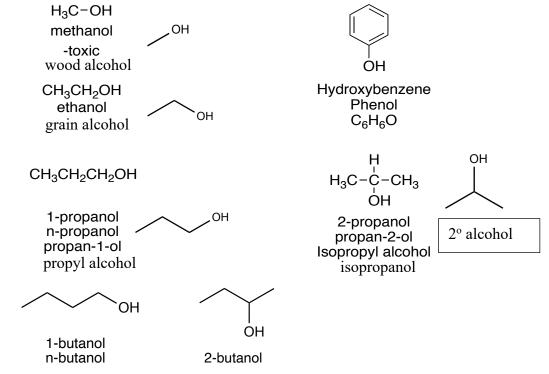
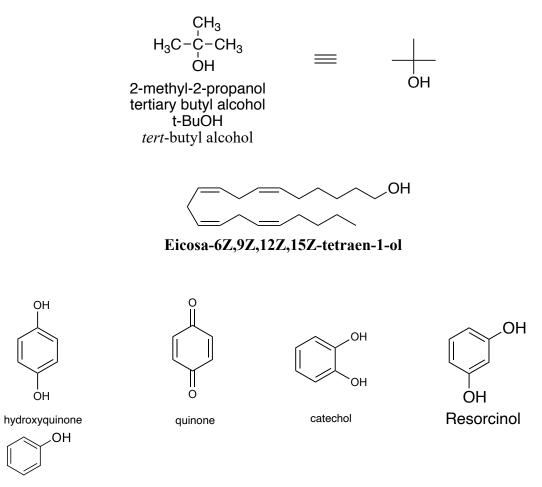

Alcohol and Ether Nomenclature

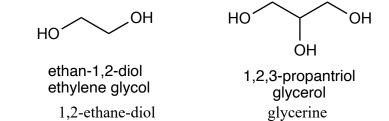
Alcohols are classified as primary (1°) , secondary (2°) , or tertiary (3°) , depending on the number of organic groups bonded to the hydroxyl bearing carbon.

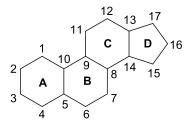

Note: –OH is called hydroxyl, hydroxy or alcohol -OR is called Alkoxy group **Naming:**


1. Find the longest chain, with the maximum number of OH groups.

2. Number in such a way to give the first OH the lowest number

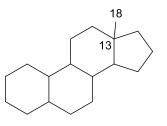
3. Drop the "e" of the alkane name, add "ol"

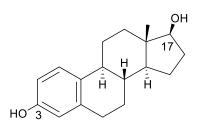

Note: the alcohol (-OH) takes priority over ethers, multiple bonds, and halogens **Examples:**

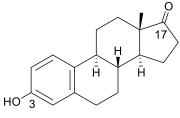

Phenol

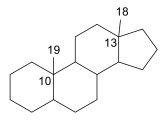
Phenol is very common in nature, phenol based structures occurred in lignin Catechol: part of some neural transmitter

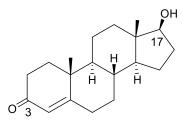
Note: most alcohols are flammable, however, as the chain gets longer, the molecules would tend to stick together (i.e., intermolecular forces) and would be less flammable.


Steroids


Groups above: β (beta) Groups below: α (alpha)

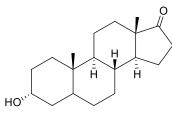

Types of Steroids

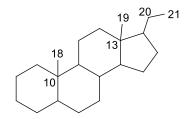

Estrane Characterized by a methyl group in C13



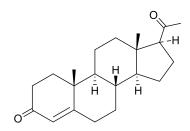
Estradiol

Estrone

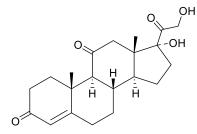



Androstane Characterized by the presence of -CH₃ groups in C10 and C13

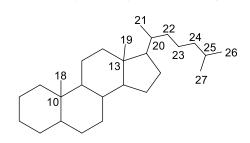
Testosterone

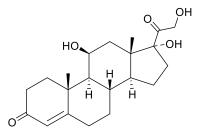


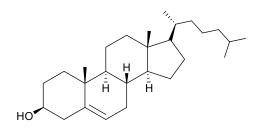
Androsterone

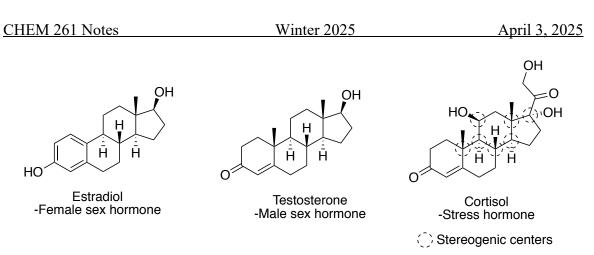


Pregnane


 Characterized by two -CH₃ groups in C10 and C13, and a substituent in C17.
Not biologically active


Progesterone Pregnancy Hormone


Cortisone (Adrenocorticoid) Characterized by a carbonyl at C11 and pregnane skeleton


Cholestane

Cortisol Stress Hormone

Cholesterol

Polyols:

If more than one hydroxyl group is present, a prefix is added to the "ol" :

2 OH's	diol (glycol)
3 OH's	triol
4 OH's	tetraol
5 OH's	pentaol

Physical Properties of Alcohols

- The hydroxyl group is a very polar group. This allows small alcohols (methanol, ethanol, propanols) to be miscible with water (if the number of C < 4) as they are good hydrogen bond donors *and* acceptors.

- Soluble in H₂O, as the #C increases, the solubility decreases.

- Alcohol densities are usually $\rho < 1.0 \text{ g/cm}^3$.

- They have high boiling and melting points, again due to their hydrogen bonding capabilities.

Look at the following comparisons:

Name	Methanol	Ethane	Ethanol
Formula	CH ₃ OH	CH ₃ CH ₃	CH ₃ CH ₂ OH
Molecular Weight (g/mol)	32	30	46
Boiling Point (° C)	65	-89	78.5
State (at room temp)	liquid	gas	liquid

Ethane has almost the same molecular weight as methanol. However, the boiling point is much lower than methanol. Methanol molecules like to stick together via H-bonding while ethane molecules interact with each other via hydrophobic interactions.

O-H bond - easy to break

R-O bond - hard to break; always needs a strong acid to break and can proceed either $S_{\rm N}\text{-}1$ / $S_{\rm N}\text{-}2,$ or E1 / E2

Acidity of R-OH

H-OH $H^{-O}H$ $H^{-O}H$ $H^{-O}H$ H^{-O} $H^{+}H^{+}$

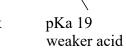
_ОН H₃C−ОН ____ H₃C−О[⊖] + H[⊕]

$$\bigvee$$
OH $H_{3}C-C$ OH $\xrightarrow{pKa 17}$ $H_{3}C-C$ O $^{\ominus}$ + H^{\oplus}

$$\begin{array}{cccc} \mathsf{OH} & & \mathsf{CH}_3 & \mathsf{pKa} \ \mathsf{18} & & \mathsf{CH}_3 \\ \mathsf{H}_3\mathsf{C}-\overset{\mathsf{C}}{\mathsf{C}}-\mathsf{OH} & & & & \mathsf{H}_3\mathsf{C}-\overset{\mathsf{C}}{\mathsf{C}}-\mathsf{O}^{\boxdot} & + & \mathsf{H}^{\oplus} \\ \mathsf{H} & & & \mathsf{H}_3\mathsf{C} \end{array}$$

$$- \begin{array}{cccc} & & & & & & & \\ - & & & & \\ - & & & \\ - & & & \\ -$$

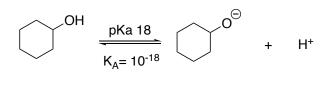
- pKa depends on conjugated base stability
- Harder to make a t-butoxide than methoxide. The alkyl group donates electron density to the C–O bond and destabilizes the negative charge (less favorable).

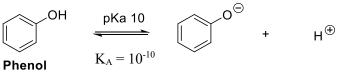

CH₃O-H CH₃ $\stackrel{\circ}{\text{O}}$ methanol methoxide $\kappa^{\oplus} \odot O \longrightarrow + H^{O} H \longrightarrow KOH + HO-$ Stronger Stronger Weak pKa

Acid

Methoxide vs. Isopropoxide:

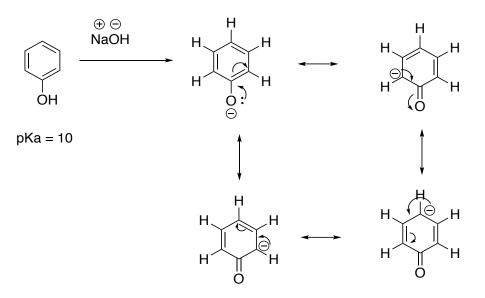
base

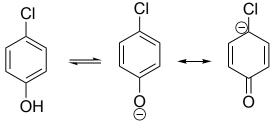

Weak base



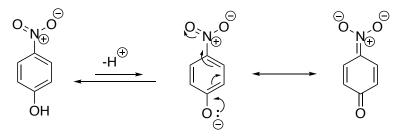
Alkyl groups donate electrons through single bonds, destabilizing the negative charge (Inductive Effect), therefore, isopropoxide is less stable than methoxide

- Inductive effect – donation or withdrawal through single bonds


Conjugated/Aromatic R-OH

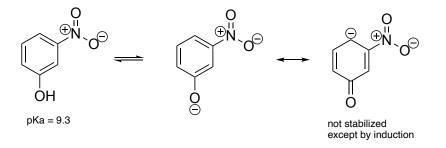

- More acidic than H₂O
- Resonance (resonance effect) takes electron density away from the O atom, resulting in stabilization of the negative charge.
- Resonance effect is strong through π system

Example 1: Phenol

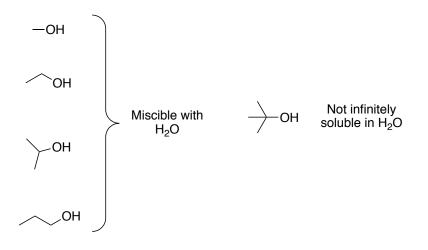

The alkoxide of phenol is a conjugated anion and is therefore much more acidic

Example 2: *p*-Chlorophenol

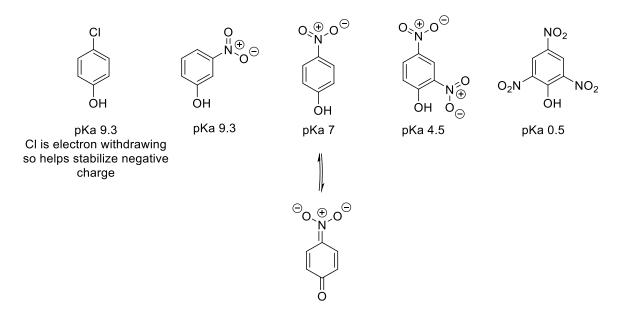
pKa = 9.3


Example 3: *p*-Nitrophenol

pKa = 7.3


p-Nitrophenol is more acidic than phenol because on top of the resonance forms that phenol contains, *p*-nitrophenol also contains the above extra resonance form, making the proton on the alcohol even more acidic.

Example 4: *m*-Nitrophenol


Less acidic than *p*-nitrophenol because there is less stabilization of the negative charge. The negative charge is not conjugated with the nitro group double bond.

Miscibility of Alcohols with Water

*butanol is soluble in H₂O but not miscible

More examples:

- As you get more resonance possibilities, the negative charge is more spread out across the molecules, and is more stabilized, resulting in lower pKa (more acidic).