Formal Charge

- Convention to keep track of charges
- \sum (sum of) of formal charges on all atoms in a molecule = the overall charge on the molecule

Rules for calculating formal charge

- Add the number of protons (the atomic number) in the nucleus
- Subtract the number of inner shell electrons
- Subtract the number of unshared electrons
- Subtract ½ of the number of shared outer shell electrons

Examples:

1. NaNO₂ (sodium nitrite; food preservative) Nitrite anion

Overall charge on the nitrite anion is = -1

Single bonded oxygen:

+8 (number of protons)

-2 (1s electrons)

-6 (unshared electrons)

 $\frac{1}{2}$ x 2 = -1 (1/2 of shared electrons)

Central N:

+7 (number of protons)

 $-2 (1s e^{-})$

-2 (unshared e⁻)

 $-3 (1/2 \text{ shared } e^{-})$

= 0

2. Methyl radical (sp³, tetrahedral)

Overall charge on the methyl anion is = 0Very unstable since it doesn't have an inert gas configuration

Formal Charge on Carbon

+6 (number of protons)

-2 (1s electrons)

-1 (unshared electrons)

 $\frac{1}{2} \times 6 = -3$ (1/2 of shared electrons)

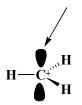
<u>CHEM 261</u> Fall 2025 September 11, 2025

3. Methyl cation (carbocation, sp², planar)

- (sp² hybridized carbon, planar shape)
- can be reactive intermediate in principle

Overall charge on the methyl anion is = +1

Formal Charge on Carbon


+6 (number of protons)

-2 (1s electrons)

0 (unshared electrons)

 $\frac{1}{2} \times 6 = -3$ (1/2 of shared electrons)

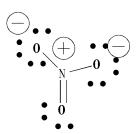
Empty p orbital

4. Methyl anion (sp³, tetrahedral)

$$\begin{array}{cccc} H & & & H \\ H - \overset{\stackrel{}}{C} : & & & & H - \overset{\stackrel{}}{C} : & \\ & & & & H \end{array}$$

Overall charge on the methyl anion is = -1

Formal Charge on Carbon


+6 (number of protons)

-2 (1s electrons)

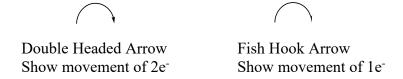
-2 (unshared electrons)

 $\frac{1}{2} \times 6 = -3$ (1/2 of shared electrons)

5. Sodium Nitrate (NaNO₃)

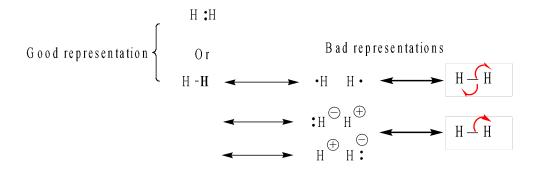
Formal Charge on Nitrogen

+7 (number of protons)


-2 (1s electrons)

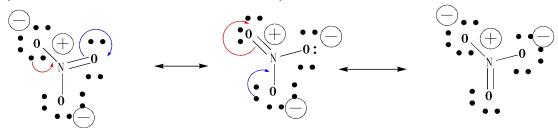
0 (unshared electrons)

 $\frac{1}{2} \times 8 = -4 (1/2 \text{ of shared electrons})$


Resonance Structures: Different drawings (or pictures) of the same molecule made by moving electrons but not atoms

- Move the electrons, keeping the position of the atoms the same
- Good resonance structures:
 - o Maintain inert gas configuration around each atom
 - Avoid the separation of charges
- Avoid like-charges on adjacent atoms
- Double-headed arrow (← →) is used to indicate resonance forms. Fish Hook and double-headed arrows are used to show electron movement

Examples


1. Hydrogen gas, H₂

In the bad representations, non- inert gas configuration and extra charges have been created

2. Sodium Nitrate, NaNO₃, Na⁺ NO₃⁻

(Nitrate has 3 resonance forms shown here)

No inert gas configuration disrupted No extra charge created

- The O atoms contain partial single and double bond characteristics (each O has -2/3 charge)

3. Allyl Cation

-electrons are delocalized between the two carbons on both side of the central C and C atoms has -1/2 charge and contains partial double and single bond character.

4. Benzene, $C_6H_6 = \Phi$

4. 1,2-Dichlorobenzene

5. Keto-Enol

<u>CHEM 261</u> Fall 2025 September 11, 2025

6. Sodium Nitrite, NaNO₂

$$\stackrel{\bigcirc}{:}\overset{\circ}{\circ}\overset{\circ}{:}\overset{\circ}{\circ}:\overset{\circ}{\circ}\overset{\circ}{:}\overset{\circ}{\circ}\overset{\circ}{:}\overset{\circ}{\circ}\overset{\circ}{:}\overset{\circ}{\circ}$$

Nitrite anion is reactive in both O atoms. Electrons are delocalized in more than one atom – both O atoms has -1/2 charge and contains partial double and single bond character.

7. Allyl Radical

The radical is relatively stable due to resonance.

8. Propyne cation

Intermolecular Forces: forces present between molecules, governed by electronegativity

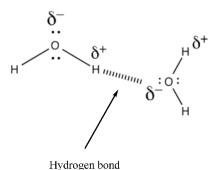
- Attractive intermolecular forces:

CHEM 261 Fall 2025 September 11, 2025

- i) **Hydrogen bonding** strongest on per atom basis (e.g. base recognition in forming DNA helix) (also in RNA)
 - Linus Pauling development of H bonding
- ii) **Dipole-dipole interaction** (Intermediate strength)
- iii) **London forces** (temporary dipole; hydrophobic bonding) weakest on per atom basis distortion of inner shells.

Electronegativity:

- An atom's desire for electrons (negative charge).
- On the periodic table, electronegativity increases as you go from left to right (up to inert gases, which are not electronegative) and as you go from down to up
- Halogens (F, Cl, Br, I) are highly electronegative
 - o i.e. Fluorine is the most electronegative atom (wants to gain the inert gas configuration of Ne) and is small (has few electrons)
- It influences acidity of H's attached, as well as the intermolecular forces between molecules.


Hydrogen Bonding:

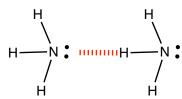
- Strongest intermolecular attractive force
- Need H directly attached to a very electronegative atom (N, O, F, Cl, Br, I)
 - Known as donors
- Very electronegative atom needs a lone pair of electrons (N, O, F, Cl, Br, I)
 - Known as acceptors

Examples:

Methane: (CH₄) Incapable of hydrogen bonding, has a low boiling point because the intermolecular forces are weak.

H-O-H (water):

- Oxygen is electronegative and it is sp³ hybridized
- The partial positive charge on H and the partial negative charge on O lead to their attraction
- Results in high boiling point (100 C) and high melting point by self-association
- HF, H₂O and NH₃ form hydrogen bonds

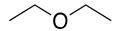

Water can form "temporary" bonds, resulting in a large number of intermolecular bonds.

$$\begin{array}{c|c}
\delta^{-} \\
\vdots \\
\delta^{+} \\
H \\
M \\
M
\end{array}$$

- Water is a liquid at RT while ammonia is a gas
- Oxygen is more e-neg than nitrogen, so the protons on water have a higher positive partial charge than the protons on ammonia
- In an ammonia solution, water would be the hydrogen bond donor and ammonia would be the acceptor
- Water dissolves ammonia very well up to 18M

Ammonia:

- both H-bond acceptor and donor
- H-bond is weaker than the H-bond of water because N is less electronegative than O
- BP: -33C (much higher than methane)



Acceptor (lone pair). Donor (H available)

Ethanol

- both H-bond acceptor and donor
- -BP: 78.5 °C

Hydrogen bonding in mixtures:

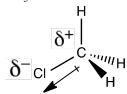
Diethyl Ether

- Cannot hydrogen bond to itself
 - Has no H directly attached to oxygen (No donor)
 - Can H-bond to water because it has an acceptor
- Has a low boiling point
- Will not dissolve in water very well (although a little bit will be dissolved)

n-Propanol (1-Propanol)

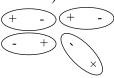
- Can hydrogen bond to itself
 - Has H directly attached to oxygen
- Has a high boiling points relative to its size due to hydrogen bonding
- Can dissolve in water very well

Dipole-Dipole Interactions:

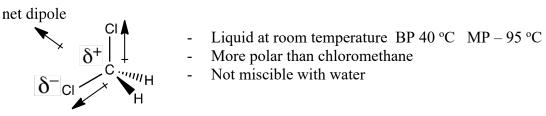

Dipole drawing convention:

$$\delta^+$$
 δ^-

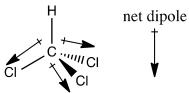
Partial positive charge is the "plus" end, partial negative charge is the arrow head.


Fall 2025

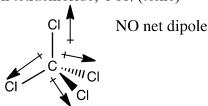
Chloromethane, methyl chloride; CH₃Cl


- H and C have similar electronegativity values (non-polar bond)
- Cl is very electronegative due to the fact that it only needs one electron to get inert gas configuration.
- Electron density is pulled toward the chlorine atom, creating a net dipole toward chlorine atom. A net dipole is the vector sum of individual bond dipoles.
- Has a higher MP and BP than methane

Dipoles in different molecules tend to line-up temporarily with each other (partial positive / negative charge on the molecule) – causes molecules to "stick" to each other


CHEM 261 Fall 2025 September 11, 2025

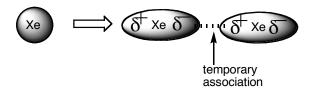
Dichloromethane, methylene chloride; CH_2Cl_2 . (Methylene = CH_2 group)


Net dipole: overall vector sum of all the bond dipoles.

Trichloromethane, chloroform; CHCl₃

- More polar than methylene chloride BP 61 °C MP 64 °C
- Higher than dichloromethane due to dipole dipole interaction

Tetrachloromethane, carbon tetrachloride; CCl₄ (toxic)


- Non-polar molecule (net-zero dipole)
- Has temporary dipoles since chlorine is polarizable (see below), BP ~77 °C
- Historically used as a dry-cleaning fluid

London Forces:

- Also known as dispersion forces, temporary dipoles or Van der Waals forces (less good)
- Weakest attractive force
- Distortion of filled outer shell electrons
- Principal effect in hydrophobic interactions

Atoms	Boiling Point	
Не	-269 °C	Small atom/ Low polarizability
Ne	-246 °C	
Ar	-186 °C	
Kr	-153 °C	↓

Xe -108 °C Large atom/ High polarizability

The larger the atom (expanded electron density), the easier the formation of temporary dipoles.

Steric effect: interaction of a filled shell of electrons. Causes repulsion.

This is the reason why CH₄ associates with CH₄, due to London forces

C₅H₁₂ hydrophobic bonding:

Hydrophobic bonding

n-Pentane has a boiling point of 35 °C; therefore, it is a liquid at room temperature - why is it a liquid? Because its temporary dipoles – it is not miscible in water – water would rather hydrogen bond to itself – like dissolves like.