Atomic Theory:

- Neils Bohr (1913) - Won the Nobel prize for his atomic theory - NOT fully correct

- The neutrons (no charge) and protons (positively charged) occupy a dense central region called the nucleus (p⁺ +N)
- The electrons (negatively charged) orbit the nucleus much like planets orbiting the Sun

- de Broglie (1924) - His 12 page PhD thesis won him the Nobel Prize

• He proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave - particle duality of matter)

Particles \leftrightarrow Waves

Often the electron density distribution is called an "orbital" by chemists

- The orbitals of an atom are described by wave functions (mathematical equations)
- These have no direct physical meaning, but when squared describe electron density

 ψ = Wave function

 ψ = orbital

 ψ^2 = (orbital)² = electron density distribution

For the hydrogen (H) atom: >98% of electron density is found in a sphere with diameter of 1\AA (10^{-8} cm)

Orbitals:

1. s-Orbital - Spherical shaped (electron density)

2. *p*-Orbital - Dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Energy (E) Level Diagram for an Atom:

Degenerate orbitals have the same energy

-e.g. all three 2p orbitals have the same energy

Atoms	Protons (+) = Atomic #	<u>Neutrons</u>	<u>1s electrons</u>	2s electrons	2p electrons
Н	1	0	1		
He	2	2	2		
Li	3	3	2	1	

Rules for Filling Electron Orbitals – AUFBAU Rule (Building-Up Principle):

- 1) Add electron to the lowest energy orbital available
- 2) Maximum of two electron per orbital (each having opposite spin quantum number)
 - Pauli Exclusion Principle
- 3) Place one electron into each orbital of the same energy (degenerate orbitals), before adding a second electron
 - Hund's Rule of Maximum Multiplicity

All elements want an inert gas configuration (e.g. Ne) and from the diagrams above, both Li and F are unhappy with unfilled orbitals (not in an inert gas configuration).

If Li loses an electron to become Li^+ and obtain inert gas configuration, it becomes isoelectronic with He

-Isoelectronic = same electronic structure

If F gains an electron to become F^- and obtain inert gas configuration, it becomes isoelectronic with Ne

Ionic Bonding

Lithium fluoride is an example of <u>ionic bonding</u> in which positive and negative species are bonded to each other. Li could lose 1e⁻ from 2s orbital to become isoelectronic to He (as Li^+) and F could gain 1e⁻ to become isoelectronic to Ne (as F^-).

 Li^{o} + F^{o} \rightarrow Li^{+} + F^{-} Loss of 1e⁻ Gain of 1e⁻

Isoelectronic = Same electron configuration

In a solid, Li⁺ and F⁻ would form a cubic crystalline solid Lithium fluoride

Electronegativity

- Desire of atoms for electrons
- Electronegativity increases from left to right across the period in the periodic table (atoms get stronger attraction as the nuclear charge increases
- Electronegativity increases from bottom to top in the group (Distance between nucleus and valence shell decreases)

Covalent Bonding

- Sharing of electrons between the atoms
- More common in organic chemistry