Quantitative Analysis

Quantitative: How much of the compound of interest (quantity) Amounts of atoms in a compound

Note: Matter cannot be created or destroyed in a chemical reaction; therefore the amount of carbon in the CO_2 is equal to the amount of carbon in the starting sample.

Percent Composition

Weight of carbon (in sample) = $\frac{12 \text{ g/mol of C}}{44 \text{ g/mol CO}_2}$ x 10.35 mg of CO₂ = 2.82 mg of C

Molecular Weight (MW) of $CO_2 = 12$ (C) $+ 2 \times 16$ (O) = 44 g/mol

Weight of hydrogen = $\frac{2(1 \text{ g/mol of H}) \text{ x}}{18 \text{ g/mol of H}_2\text{O}}$ 3.42 mg of H₂O = 0.383 mg of H

NB: H₂O contains two hydrogen. MW of H₂O = $(2 \times 1) + 16$ H₂ O

Weight of oxygen = 4.34 mg - (2.82 mg of C + 0.383 mg of H) = 1.14 mg of O

Now one can calculate percentage composition:

% Composition:

% C = Mass of carbon x 100% = 2.82 mg of C x 100% = 65.1%

% H = $\frac{0.383 \text{ mg of H}}{4.34 \text{ mg}}$ = 8.83%

% O = 100% - 65.1% - 8.83% = 26.1%

The empirical (and with additional data, molecular formula) can be determined from % composition

Determining the empirical experimental formula:

Definition: Empirical formula is the ratio of atoms to each other in a molecular formula

There are three steps to calculate the empirical formula:

1) Divide each percentage (%) by the atomic weight of the element \rightarrow crude ratio

4.34 mg

- 2) Divide each crude ratio by the smallest crude ratio \rightarrow refined ratio
- 3) Multiply the refined ratio by an integer value $(x_2, x_3, x_4...) \rightarrow$ integral ratio

% Composition	Crude Ratio	Refined Ratio	Integral Ratio
65.1 % C	65.1 / 12.0 =	5.42 / 1.63 =	$3.34 \ge 3 = 10$
	5.42	3.34	
	(% C / At Wt C)		
8.83 % H	8.83 / 1.01 =	8.76 / 1.63 =	5.39 x 3 = 16
	8.76	5.39	
26.1 % O	26.1 / 16.0 =	1.63 / 1.63 =	$1.00 \ge 3 = 3$
	1.63	1.00	

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Using this formula an empirical weight can be calculated.

C: $10 \times 12 = 120$ g/mol H: $16 \times 1 = 16$ g/mol O: $3 \times 16 = 48$ g/mol

 $C_{10}H_{16}O_3 = 184 \text{ g/mol}$

Note: Suppose the molecular weight is given as 368 g/mol, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $C_{20}H_{32}O_6$.

The molecular weight can be independently determined via mass spectrometry.