Chem 261 Dec 4, 2020

Ethers

An ether is a substance that has two organic groups bonded to the same oxygen atom, R-O-R', where R and R' can be the same or different, but cannot be carbonyl (C=O), or H directly attached. The organic groups may be alkyl, aryl, or vinylic, and an ether can either be an open chain or a ring. Perhaps the most well known ether is diethyl ether, a familiar substance that has been used medically as an anesthetic, and is used industrially as a solvent.

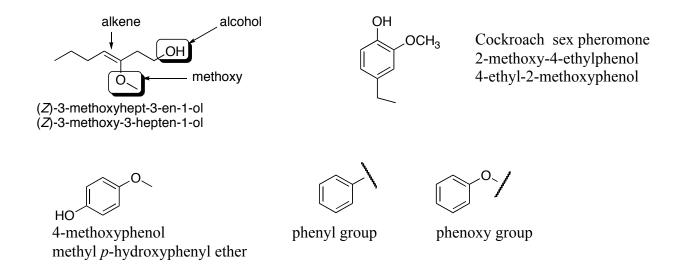
diethyl ether

Naming Ethers

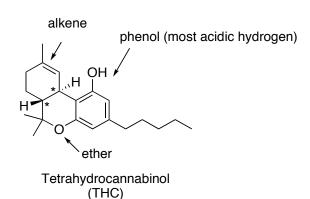
Two systems for naming ethers are allowed by IUPAC rules. Simple ethers with no functional groups are named by identifying the two organic substituents and adding the word *ether* as in the below examples.

diethyl ether or ethyl ether or ether dimethyl ether or methyl ether

ethyl methyl ether


anisole methyl phenyl ether

Naming Rule


Drop ane add oxy: e.g. methyl to metghoxy

If other functional groups are present, the ether part is considered to be an alkoxy substituent (-OR).

For example, the parent name for the below structure is an alcohol.

Example: THC

You should be able to identify different functional groups in a large molecule like THC, and be able to find stereogenic centers and identify the configurations. If treated with Br₂, which double bond will react? *Answer*: Top one (The non-aromatic alkene).

Ethers: Properties

- 1. Intermediate polarity usually have dipoles & can accept hydrogen bonds
- 2. Not miscible with water very slight solubility
- 3. Good solvents for many organic compounds
- 4. Less dense than water ρ <1.0 floats on water
- 5. Usually chemically unreactive inert to base or weak acid can react with very strong acid

Elimination to alkenes

Reverse of Addition Reaction Requires Strong Acid

Ethers are essentially inert except in the case of reacting with a strong acid

Example:

Substitution to alcohols or alkyl halides

Substitution reversible - reverse of synthesis of ethers -

Strong Acid

$$S_{N}1$$
 $CH_{3}OH$
 $H_{2}SO_{4}, \Delta$

Diastereomers

 sp^{2} , planar

S_N2 Reaction to Convert Alkyl Halide to Ethers – NOT reversible without strong acid