NEXT SECTION: Lecture Outline 2: ALKANES

Hydrocarbons – Compounds that contain only C and H

- Alkanes contain only single bonds (C-H, C-C)
- Alkenes = Olefins (C=C)
- Alkynes = Acetylenes ($C \equiv C$)

Alkanes

- All carbons are sp³ hybridized (optimal bond angle of 109°)
- Single bonds (σ bonds).
- Tetrahedral geometry at every carbon
- Held together by London (dispersion) forces

Ex #1) CH₄, methane

$$H_{,,|C} H$$

$$Bp = -161^{\circ}C$$

Ex #2) C_2H_6 , ethane

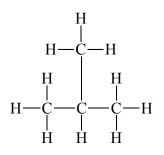
$$Bp = -161^{\circ}C \qquad H - C - C - H \qquad Bp = -88^{\circ}C$$

$$H = H + H$$

$$H = H + H$$

 CH_4 H_4C CH₃-H C_2H_6 CH₃-CH₃ H₃C-CH₃

Ex #3) C₃H₈, propane


Ex #4) C_4H_{10} , butane

 C_3H_8 $CH_3CH_2CH_3$ \longrightarrow H_3C C₄H₁₀, CH₃CH₂CH₂CH₃

n-Butane: normal straight chain butane

NOTE: Propane has a boiling point of -42°C, which is higher than methane because it's chain-like structure allows for more surface area for London dispersion forces to take effect.

Ex #5) C₄H₁₀, isobutene or i-Butane

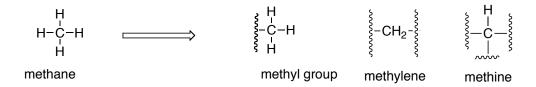
- Isomers are different compounds that have the same molecular formula and different structure. They have different physical properties (e.g. mp, bp, odour, biological effects)
- iso meros same - parts

one type: structural (same as constitutional)

structural isomer = constitutional isomer

\ \ \ \ \

-C H_2


isopentane n - pentane Neopentane

Neo Group

Groups (part of an alkane structure)

- In naming the particular group, drop the "ane" part and add "yl" to the name
- For example, methane → methyl

(i) Methyl group – CH₃

(ii) Ethyl group – CH₂CH₃

(iii) Isopropyl group

n-propyl alcohol

(v) tert-Butyl group

n-propyl chain

tert-Butyl chain tert-Butyl chloride