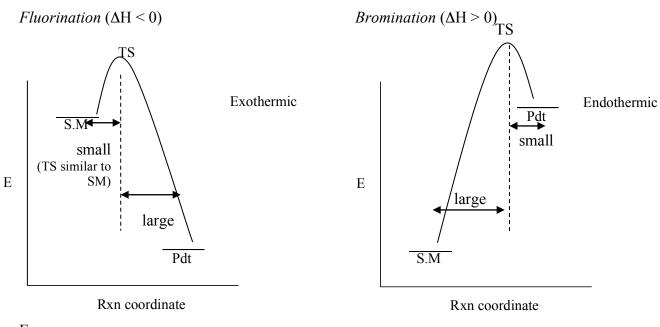

Reactivity and Selectivity (Hammond Postulate)

I₂ does not react as above

NOTE:

More reactive reagents give less selective products Less reactive reagents give more selective products


For Exothermic Reactions

-The transition state resembles the starting material

For Endothermic Reactions

-The transition state resembles the products

Energy Diagrams for Halogenation Reactions

E = energy TS = transition state SM = starting material

For Exothermic Reactions

-The transition state resembles the starting material

For Endothermic Reactions

-The transition state resembles the products

Reactivity TREND:

 $\overline{F_2 > Cl_2 > Br_2 >> I_2}$ Iodine does not react

$F \cdot + - \stackrel{ }{C} - H \longrightarrow F - H + - \stackrel{ }{C} \cdot$	$\Delta H = -35$ kcal/mole Exothermic
$Br \cdot + -C - H \longrightarrow Br - H + -C \cdot$	$\Delta H = +16$ kcal/mole Endothermic

Selectivity TREND:

Br• > CI•	> F•
most selective	least selective
endothermic	exothermic

Bromine atom "searches" the molecule to create the most stable radical Fluorine atom is small and feels the loss of an electron much more than bromine

- Fluorine is less precise and reacts immediately