Step 1

Terminations

Example: Methylcyclohexane

Other Examples:

The reaction can utilize either heat (Δ) or light (hv)

Different types of hydrogen can be pulled from a methylcyclohexane in a radical halogenation reaction to give various products. However, one main product is obtained. This is explained in terms of the stability of the radical formed during the reaction process.

Stability of radicals:

- Stability increases with alkyl substitution
- Alkyl groups are polarizable and donate electrons to electron deficient sites better than hydrogens (this is called **inductive effect** and occurs through sigma bonds)

Or it can be summarized from least to most stable radicals:

·CH ₃ <	CH ₂ R	< ·CHR ₂	< 'CR ₃
methyl	primary (1	°) secondary (2	(2°) tertiary (3°)
radical	radical	radical	radical
(least stabl	e)		(most stable)

More Examples

A. 1,1,3-trimethylcyclopentane bromination

1,1,3-trimethylcyclopentane

B. 2,2,4-trimethylpentane chlorination

2,2,4-trimethylpentane

1,1,4-trimethylcyclohexane

Neopentane (2,2-dimethylpropane)

2, 5-dimethylhexane