September 16, 2020

CHEM 261 Acids and Bases

Bronsted – Lowry :

- An acid donates proton (H⁺)
- A base accepts a proton (H⁺)

HCI \longrightarrow H⁺ + CI⁻ NaOH \longrightarrow Na⁺ + OH⁻

- HCI + NaOH → NaCI + H-OH
- Very fast reaction as HCl is a strong acid and NaOH is a strong base. NaCl is a weak base (weak conjugate base) and H₂O is a weak acid (weak conjugate acid).

Lewis Acid/Base:

- An acid accepts a pair of electrons
- A base donates a pair of electrons

BF₃ can react with potassium fluoride (KF) to obtain an inert gas configuration. However, BF_4^- is unhappy with a formal negative charge, so the reaction is reversible.

• Every Bronsted-Lowry acid/base is also a Lewis acid/ base. The converse statement is not true; not all Lewis acids/bases can be classified as a Bronsted-Lowry acids/bases.

The equilibrium above lies far (exclusively) to the left. Hydroxide will NOT deprotonate methane.

Ex # 2) Ammonia Gas:

H-NH₂
$$\longrightarrow$$
 H $+ \bigcirc$ $\dot{N}H_2$ $K_a = [H^+][NH_2] = 10^{-36}$
 $pK_a = 36$

Ammonia gas is a better acid compared to methane (bigger K_A), because nitrogen is more electronegative than carbon. It can hold a negative charge easier than carbon.

NB: The lower the pKa the more acidic

pKa of "Ammonia" in biological system

Ex #3) Methane:

H-CH₃
$$\longrightarrow$$
 H⁺ + CH₃⁻
 $K_a = [H^+][CH_3^-] = 10^{-46}$
 $[HCH_3]$
 $pK_a = -logK_a = 46$

NB: Oxygen is more electronegative than nitrogen, which makes water more acidic than ammonia. Nitrogen more electronegative than carbon and that makes ammonia more acidic than methane.

			+ Na
$Na^{+} + OH$	+ CH ₄	Н-О-н	+ :CH ₃
Weak Base	Weak Acid	Strong Acid	Strong Base

The equilibrium above lies far (exclusively) to the left. Hydroxide will NOT deprotonate methane.

Ex #4) Strong acid/base

The reaction lies far (exclusively) to the left since ammonia is not a strong enough base to deprotonate methane