Elimination Reactions:

2 Types of Mechanisms: E₁ and E₂

Base vs. Nucleophile:

$$Y : H_3C - X$$

Base

Elimination (E_1 and E_2)

Nucleophile
Substitution ($S_N 1$ and $S_N 2$)

Addition Reaction	reverse is	Elimination Reaction
X ₂ Halogenation		- X_2 Dehalogenation with Zn – always E_2
HX Hydrogen Halide		- HX Dehydrohalogenation E_1 or E_2 Steric effects control
ROH H ⁺ Water/Alcoho	I	- HOR Dehydration or Ether Cleavage $\mathrm{E_1}$ or $\mathrm{E_2}$ usually requires acid, e.g. $\mathrm{H^+}$

Dehydrogenation, De-Hydroboration, removal of Oxygen not discussed or not possible

<u>E₂ Reaction</u> (E=Elimination):

- Rate depends on two concentrations
- Stereospecific
- Concerted (bonds being formed and broken at the same time) - No intermediate
- Anti-periplanar geometry

1) Dehalogenation

Example #1:

- Zinc mechanism always proceeds via E₂

Example #2:

Due to mechanism of Zn, the double bond is stuck at less substituted end.

Double bond can go to more substituted if it is left in aced