Chem 164/261

Assignment & Lecture Outline 3:

Stereochemistry, Alkyl Halide Substitution (S_N1 & S_N2) and Elimination (E1 & E2) Reactions

Read

Organic Chemistry, Solomons, Fryle & Snyder 11e Edition

- Functional Group List Learn to recognize Please see Green Handout also p 76 of text
- Periodic Table Inside Front Cover know 1st 10 elements (up through Neon)
- Relative Strength of Acids and Bases Inside Front cover (reference only)
- Chapter 5 Stereochemistry
- Chapter 6 Ionic Reactions: Nucleophilic Substitution & Elimination Reactions of Alkyl Halides

Problems:

Do Not turn in, answers available in "Study Guide Student Solutions Manual " Solomons, Fryle, Snyder

- Chapter 5: 5.1 to 5.15; 5.18 to 5.21; 5.26; 5.28; 5.33a-d; 5.46
- Chapter 6: 6.1 to 6.10; 6.12; 6.15; 6.20; 6.26; 6.27

Lecture Outline #3

I. Comparison of 2 Structures:

Same Molecular Formula? -> If Yes, Possibly Isomers or Identical Same Arrangement (Sequence) of Groups?

If No -> Structural Isomers

If Yes -> Superposable?

If Yes -> Identical Structures

If No -> Stereoisomers

Non-Superposable Mirror Images?

If NO -> Diastereomers

If Yes -> Enantiomers

II. Chirality and Stereoisomers

- A. The Concept of Chirality
 - 1. Identification of chiral objects
 - a) achiral = not chiral
 - b) planes of symmetry within a molecule
 - 2. Types of stereoisomers enantiomers and diastereomers
- B. Location of stereogenic (chiral) centres 4 different groups on tetrahedral atom
 - 1. Enantiomers & diastereomers
 - 2. Meso compounds chiral centers with plane of symmetry within molecule
 - 3. Molecules with more than one chiral centre
 - 4. Recognition of chiral centers in complex molecules cholesterol 8 chiral centres

 Drawing the enantiomer of cholesterol and its potential 255 stereoisomers

5. Fischer projections

C. R and S nomenclature

- 1. Rules for Assigning R and S configurations
- 2. Treatment of multiple bonds

III. Optical Rotation, Optical Purity, and Resolution of Enantiomers

- A. Optical Rotation
 - 1. Measurement, factors, and absolute rotation
 - 2. Optical purity and enantiomeric excess
 - 3. Physical Properties of Enantiomers and Diastereomers
 - 4. Racemic mixtures 50-50 mixtures of enantiomers
 - 5. Optical Purity = enantiomeric excess (ee)
- B. Separation (Resolution) of Enantiomers (e.g. Racemic mixtures)
 - 1. Creation of diastereomers
 - 2. Biological recognition

IV. Nucleophilic Substitution Reactions (S_N1 and S_N2)

- A. General Features of Nucleophilic Substitution vs. Elimination Reactions
 - 1. Definitions: $S_N 1$ and $S_N 2$
 - 2. Mechanisms
- B. S_N2 Reactions
 - 1. Stereochemistry Walden Inversion (inversion of configuration)
 - 2. Substitution of Primary and Secondary Alkyl Halides
 - 3. Synthesis of alcohols, ethers, other halides, etc.
 - 4. Replacement of Acetylenic Hydrogen
 - a. Acidity of Alkynes
 - b. Alkylation Substitution Reactions
- C. S_N1 Reactions
 - 1. Stereochemical Aspects (loss of stereochemistry via carbocations)
 - 2. Substitution of Tertiary Alkyl Halides and Other Tertiary Carbons
 - 3. Synthesis of alcohols, ethers, halides

V. Elimination Reactions - E1 & E2 Competition with Substitution Reactions (S_N1 and S_N2)

- A. El Mechanism Saytzeff (Zaitsev) Rule, Leaving Groups
- B. E2 Mechanism Stereochemistry
- C. Competition of Elimination Reactions (E2 and E1 versus S_N1 and S_N2)