Chem 164 Sept 6, 2007

Definitions

- Chemistry: Study of matter
- Organic Chemistry: Study of compounds containing carbon
- Atom: Is the smallest possible particle that defines a complete chemical element
- Molecules: Atoms connected in a particular arrangement
 - Changing the arrangement or connections changes the molecule and its physical properties.
- Compound: Collection of molecules of the same type
 - Water (H₂O), Cholesterol (27 carbons, white crystalline powder, average male contains 80g)
- Atomic Number: number of protons in nucleus of atoms
- Atomic Weight: mass of protons and neutrons
- Molecular Weight (MW): mass of atoms in molecule
 - \circ Hydrogen = H, Atomic number = 1, 1 proton = $p^+ = (1H^+)$
 - Deuterium = D or d, Atomic number = 1, 1 proton and 1 neutron, Atomic
 Weight = 2 is an Isotope of Hydrogen

Mole Concept

- 1 mole = 6.02×10^{23} (Avogadro's number) (can be atoms, molecules etc)
- 1 mole H = 1 g
- H_2O : $MW = [(2 \times 1 \text{ g/mol})H + (1 \times 16 \text{ g/mol})O] = 18 \text{ g/mol}$
- $18g ext{ of } H_2O ext{ is } 6.02 ext{ x } 10^{23} ext{ molecules} = 1 ext{ mole of } H_2O ext{ or } 6.02 ext{ x } 10^{23} ext{ molecules of water}$

Typical Molecule

- A few Angstroms (Å) in length
- $1 \text{ Å} = 10^{-8} \text{ cm}$

Example: cholesterol is 18 Å across. If you lined all of the cholesterol molecules in a 80g bottle end to end it would wrap around the earth roughly 5,000,000 times.

Purity of Compounds

- 1 mole of H_2O (6.02 x 10^{23} molecules) = 18g then add 1 x 10^6 other molecules (eg. sugar) the purity of the water would be 99.999 999 999 999 999% pure.
- Purity: A pure compound shows no change in physical properties upon attempts to further purify. (purity is a relative term)

Physical Properties

- Defined by chemical structure.
- Melting point (mp) and Boiling point (bp): Each compounds has a characteristic mp and bp.
- Taste, appearance, odour, and biological properties (how it interacts with other molecules).
- Density (g/cm³).
- Absorption of radiation.
- Solubility

Chemical Analysis

- Qualitative Analysis
- Quantitative Analysis

Qualitative Test for Inorganic or Organic Compound

- Qualitative: Determine if you have the compound of interest.

Organic	Inorganic
- Contains carbon	- No carbon
- Low mp < 200 °C	- High mp
- Burn frequently	- "Does not burn"
- Soluble in non-polar solvents	- Soluble in H ₂ O

THERE ARE MANY EXCEPTIONS !!!

Quantitative Analysis

- Quantitative: How much of the compound of interest (quantity).

Organic compound
$$O_2$$
 O_2 O_2 O_3 O_4 O_4 O_5 O_5 O_5 O_5 O_6 O_7 O_8 O_8 O_9 O_9

Note- Matter cannot be created or destroyed in a chemical reaction, therefore the amount of carbon in the CO₂ is equal to the amount of carbon in the starting sample.

Weight of carbon (in sample) =
$$\frac{12 \text{ g/mol of C}}{44 \text{ g/mol CO}_2}$$
 x 10.35 mg of CO₂ = 2.82 mg of C

Weight of hydrogen =
$$\frac{2(1 \text{ g/mol of H})}{18 \text{ g/mol of H}_2O}$$
 x 3.42 mg of H₂O = 0.383 mg of H

Weight of oxygen =
$$4.34$$
mg – $(2.82$ mg of C + 0.383 mg of H) = 1.14 mg of O

Now one can calculate percentage composition

% Composition

%
$$C = \underline{\text{Mass of carbon}} = \underline{2.82 \text{mg of } C} = 65.1\%$$

Mass of sample 4.34mg

% H =
$$\frac{0.383 \text{ mg of H}}{4.34 \text{mg}}$$
 = 8.83%

%
$$O = 100\% - 65\% - 8.83\% = 26.1\%$$

The empirical (and with additional date, molecular formula) can be determined from % composition