$\Delta G = \Delta H - T\Delta S \text{ (2nd law of thermodynamics)}$

Change in enthalpy = bond energy

Exothermic $\Delta G = Negative$

Endothermic $\Delta G = Positive$

Bond Energy

Bond	Bond Energy (kcal/mol)
H-C	99
H-O	111
C-C	83
C=O	179
0=0	119

Ex)
$$CH_4 + 2 O_2 \xrightarrow{\Delta} CO_2 + 2 H_2O - Exothermic reaction (releases Energy (E))$$

 $\Delta E_{reaction} = \Delta E_{SM} - \Delta E_{pdt}$

For CH ₄ :	$4 \times C-H \text{ bonds} = 4 \times 99$		= 396 kcal/mol	ΔE_{SM} = sum of bonds
	2 x O=O	= 2 x 119	= <u>238 kcal/mol</u>	broken (enthalpy)
	ΔE_{SM}		= 634 kcal/mol	

For products:	2 C=O = 2	2 x 179 = 358 kcal/mol	ΔE_{pdt} = sum of bonds formed
	4 H-O = 4	$4 \ge 111 = 444 \text{ kcal/mol}$	
	ΔE_{pdt}	= 802 kcal/mol	

 $\Delta E_{\text{reaction}} = 634 \text{ kcal/mol} - 802 \text{ kcal/mol} = -168 \text{ kcal/mol}$ (exothermic reaction, energy released)

Acids - Bases

- Bronsted Lowry
 - An acid donates proton (H^+)
 - A base accepts a proton

Ex

- HCI \longrightarrow H⁺ + Ci⁻ NaOH \longrightarrow Na⁺ + OH⁻
- HCI + NaOH ----> NaCI + H-OH
- Lewis
 - An acid accepts a pair of electrons
 - A base donates a pair of electrons

Examples of Lewis acids

 H^+ AICI₃ BF₃

Definition

$$H \xrightarrow{\frown} A \qquad \qquad H^{\oplus} + \xrightarrow{\bigcirc} A \qquad \qquad K_{eq} = K_a = \underbrace{[H^+][A^-]}_{[HA]} \qquad \qquad K_a = acidity \ constant \\ pK_a = -logK_a$$

Ex #1)

$$H-CH_3 \longrightarrow H^+ + CH_3^-$$

$$K_a = [\underline{H^+}][\underline{CH_3}] = 10^{-46}$$

[HCH₃]

$$pK_a = -logK_a = 46$$

Ex #2)
H-NH₂
Ammonia
gas

$$\overset{(\pm)}{H} + \overset{(\frown)}{\underset{NH_2}{NH_2}} K_a = [\underline{H}^+][\underline{}^{n}\underline{H_2}] = 10^{-36}$$

[NH₃]
 $pK_a = 36$

"pKa of Ammonia" in biological system

Ex #3)

H-O-H
$$\longleftrightarrow$$
 H + \bigcirc H + \bigcirc K_a = [H⁺][$^{-}$ OH] = 10^{-15.7} [HOH]

$$pK_a = -\log K_a = 15.7$$

Leveling Effect

Ex) Na⁺:CH⁻₃ + $H-CH_3 \longrightarrow$ Na⁺ NH⁻₂ + $H-NH_2$ Stronger Acid Weak Acid Stronger Base Weak Base Na+**:**CH-3 H_2O + H-CH₃ NaOH + pKa=16 pKa = 46 Weaker Acid Stronger Acid

Nomenclature

Learn Names of First 20 Straight Chain Alkanes

Hydrocarbons – Contain C and H

- Alkanes contain only single bonds (C-H, C-C)
- Alkenes = Olefins C=C
- Alkynes = Acetylenes $C \equiv C$

Alkanes

- All carbons are sp³ hybridized (bond angle of 109°)
- Held together by London (dispersion) forces

Ex #1) CH₄, methane

Ex #2) C_2H_6 , ethane

$$\begin{array}{ccc} H & H & H \\ H & H & Bp = -161^{\circ}C & H - C - C - H & Bp = -88^{\circ}C \\ H & H & H & H \end{array}$$

Ex #3) C_3H_8 , propane

Ex #4) C_4H_{10} , butane

C₄H₁₀, CH₃CH₂CH₂CH₃

Ex #5) C_4H_{10} , isobutane

n-Butane: normal straight chain butane

- Isomers (structural or constitutional) are different compounds that have same molecular formula. They have different physical properties (e.g. mp, bp, odour, biological effects)

Iso	-	meros
same	-	parts

-

Groups (part of an alkane structure)

- in naming the particular group, drop the "ane" part and add "yl" to the name
- for example, meth<u>ane</u> \rightarrow methyl

(i) Methane – CH₄

(ii) Ethyl group -CH₂CH₃

<u>Systematic Nomenclature</u>

RULES:

- 1. find the longest chain with maximum number of branches
- 2. number from end of the chain, so 1st branch point has lowest number
- 3. name the chain, then add prefixes (for the groups attached) with number and name the groups attached

Ex#1)

isobutane (common name) 2-methylpropane (systematic name)

Ex #2)

5 Carbon = pentane

2, 3, 3, -trimethylpentane

3,5-diethyl-4-methyloctane

General Molecular Fomula of Alkanes

- No rings: general formula is C_NH_{2N+2}
- Each deviation of 2 hydrogens from the C_NH_{2N+2} formula is a degree of unsaturation
- 1 Ring: $C_{N}H_{2N}$
- 2 Rings : $C_N H_{2N-2}$ _

Ring Structures and Naming:

- start with numbering at point of maximum branches

Cycloalkanes

Ex #1) Cyclopropane, C_3H_6

- C-C-C Bond angle (°60)
 Highly reactive due to angle strain.

Ex #2) Cyclobutane, C₄H₈

Ex #3) Cyclopentane, C₅H₁₀

Ex #4) Cyclohexane, C₆H₁₂

