Quantitative analysis of organic compound (from last class)

Determining the empirical experimental formula:

- Definition: empirical formula is ratio of atoms to each other in a molecular formula
- Three steps to calculate the empirical formula:
 - i) divide each percentage (%) by the atomic weight of element \rightarrow crude ratio
 - ii) divide all crude ratio by the smallest crude ratio \rightarrow refined ratio
 - iii) Multiply the refined ratio by an integer value to get integral ratio

% Composition	Crude ratio	Refined ratio	Integral ratio
65.1 % C	65.1 / 12.0 = 5.42	5.42 / 1.63 = 3.34	$3.34 \ge 3 = 10$
8.83 % H	8.83 / 1.01 = 8.76	8.76 / 1.63 = 5.39	5.39 x 3 = 16
26.1 % O	26.1 / 16.0 = 1.63	1.63 / 1.63 = 1.00	$1.00 \ge 3 = 3$

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Using this formula an empirical weight can be calculated.

C $10 \times 12 = 120$ g/mol H $16 \times 1 = 16$ g/mol O $3 \times 16 = 48$ g/mol

 $C_{10}H_{16}O_3 = 184 \text{ g/mol}$

Note: suppose the molecular weight is given as 368 g/mol, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $C_{20}H_{32}O_6$.

Gas Law: (different kinds of units for pressure and volume can be used provided the value of the gas constant is adjusted to those units)

PV = nRT P=Pressure in mmHg V=Volume in L n=moles T=temperature in °K; °K and °C are same size but 0 °K = minus 273 °C

R is a constant $\frac{0.082 \text{ L} \cdot \text{atm.}}{\text{Mol} \cdot ^{\circ}\text{K}}$

Sample Question- What volume will 3 mL of N_2 gas occupy at standard pressure and temperature (STP) ?

Standard Pressure is 1 atmosphere or 760 mm Hg; Standard temperature is 273 °K

$\frac{\underline{P}_1 \underline{V}_1}{\underline{P}_2 \underline{V}_2} = \frac{\underline{n} R \underline{T}_1}{\underline{n} R \underline{T}_2}$	divide equations to give		$\frac{\underline{P}_{1}\underline{V}_{1}}{\underline{P}_{2}\underline{V}_{2}}$	$= \frac{T_1}{T_2}$
$P_1 = 760 \text{ mmHg}$ $P_2 = 750 \text{ mmHg}$	$T_1 = 273 \ ^{\circ}K$ $T_2 = 298 \ ^{\circ}K$	$V_2 = 3 mL$		

Solve for V₁

$$V_{1} = \frac{T_{1}P_{2}V_{2}}{T_{2}P_{1}} = \frac{(273 \text{ °K})(750 \text{ mmHg})(3 \text{ mL})}{(298 \text{ °K})(760 \text{ mmHg})}$$

= 2.71 mL is the answer

Question: How many moles of N₂ is 2.71 mL at STP and what is its mass ?

NOTE: 1 mole of an ideal gas occupies 22.4 L at STP.

 $2.71 \times 10^{-3} L \times 10^{-4} moles of N_2$ 22.4 L

 $1.21 \times 10^{-4} \text{ mol} \times 28 \text{ g/mol} = 3.4 \text{ mg of } N_2$

Atomic theory:

- Neil Bohr (1913) – won his Nobel prize for his atomic theory – NOT fully correct

- the neutrons and protons occupy a dense central region called the nucleus
- the electrons orbit the nucleus much like planets orbiting the Sun

de Broglie (1924) – his 12 page PhD thesis won him the Nobel prize
he proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave-particle duality)

 the orbitals of an atom are described by wave functions (mathematical equations) – they have no direct physical meaning but when squared, provide electron density

- ψ = orbital

- $(orbital)^2$ = electron density distribution

Note. Often the electron density distribution is called an "orbital" by chemists

For hydrogen (H) atom: >95% of electron density is found within $1\text{\AA} = 10^{-8}$ cm

Orbitals:

1. S-orbital - spherical shaped (electron density)

2. p-orbital - dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Basic principles:

- like charges repel each other
- unlike charges attract each other
- atoms want to be in inert gas electron configuration (isoelectronic with inert gas)

Atoms	Protons (+)	Neutrons	1s electrons	2s electrons	2p electrons
Н	1	0	1		
Не	2	2	2		
Li	3	3	2	1	

Abbreviation of electron - e

Energy (E) level diagram for an atom:

Rules for filling electron – AUFBAU rule (Build up Principle):

- add electron to lowest energy orbital available
- maximum two electron per orbital (each having opposite spin quantum number)
- Pauli Exclusion principle
- fill 1 electron into each orbital of same energy (degenerate orbital), then add second electron Hund rule

- all elements want inert gas configuration (e.g. Ne) and from above diagrams both Li and F are unhappy with unfilled orbitals (not in inert gas configuration)

Bonding - Ionic

- isoelectronic = same electron configuration
- Li could lose 1e⁻ from 2s orbital to be isoelectronic to He (as Li⁺) and F could gain 1e⁻ to be isoelectronic to Ne (as F⁻)

 Li^{o} + F^{o} \rightarrow Li^{+} + F^{-}

- in space these ions would be attracted to each other
- in solution they might be separated due to solvation (e.g. water would surround)
- in solid, they would form a crystalline solid structure

Bonding – Covalent and hybridisation

Electronic configuration of carbon (C):

- atomic number = 6_
- atomic weight = 12 (also has 6 neutrons) -

Carbon (C)

- other isotopes of carbon _

 - ¹³C (6p⁺, 7n) is a stable isotope, 1.1 % natural abundance ¹⁴C (6p⁺, 8n) is radioactive, $t_{1/2} = 5700$ yrs, ¹⁴C dating of organic material

- so, carbon makes 4 bonds to share 4e⁻ (covalent bonding)