CHEM 164/261 Oct. 30, 2007

Halogenation of Alkynes

Eg.

HX Addition (syn)

$$H_3C-C=C-CH_3$$
 \xrightarrow{syn} H_3C $C=C$
 $H-X$

Eg. Propyne (follows markovnikov's rule)

Addition Reactions of Alkynes – Addition of water (requires acid)

Remember

$$H_2O + H_2SO_4 \longrightarrow H_3O + HSO_4$$

2. Anti-Markovnikov Water Addn – Hydroboration-Oxidation

Two possibilities for addition of water

3. Oxidation of alkynes:

$$R-C \equiv C-R' \qquad \xrightarrow{KMnO_4} \qquad \qquad R \qquad \qquad + \qquad O \qquad \qquad + \qquad \qquad R' \qquad \qquad \\ & \qquad \qquad CO_2 \text{ is formed} \qquad \qquad CO_2 \text{ is formed} \qquad \qquad \\$$

eg. i.
$$H_3C-C \equiv C-CH_3 \xrightarrow{KMnO_4} H_3C \xrightarrow{O} H_3C \xrightarrow{O} CH_3$$
 acetic acid (vinegar) "carboxylic acid"

NOTE: do not need to worry about the mechanism of this reaction

4. Ozonolysis of alkynes:

$$R-C\equiv C-R'$$
 $\xrightarrow{O_3}$ Z_n Q_n Q

i.
$$H_3C-C \equiv C-H \qquad \begin{array}{c} O_3 \\ \hline Zn \end{array} \qquad \begin{array}{c} H_3C \longrightarrow O \\ \hline OH \\ acetic \ acid \end{array} \qquad \begin{array}{c} O \\ \hline HO \\ \hline \\ no \ CO_2 \ is \ formed \end{array}$$

5. Reactions of terminal alkynes: $\{R-C \equiv C-H \}$ eg.

- acidity of alkane / alkene / alkyne:

i.
$$H_{3}C-C \cdot H \longrightarrow H_{3}C-CH_{2} + H^{+}$$

$$Ka = \frac{[CH_{3}CH_{2}^{-}][H^{+}]}{[CH_{3}CH_{3}]} = 10^{-46}$$

$$pKa = 46$$

ii.

$$H_{2}C = CH$$
 $H_{2}C = CH$
 H^{\oplus}
 $H_{2}C = CH$
 $H_{2}C = CH$
 H^{\oplus}
 H^{\oplus}

- How strong a base needed?

acid conjugate base
$$HC = C - H \qquad H_2N - H \quad pKa \sim 36 \qquad H_2N^-$$

$$pKa = 26 \qquad H_3C - H \quad pKa \sim 45 \qquad H_3C^-$$

$$HO - H \quad pKa \sim 15.7 \qquad HO^-$$

- only H_2N^- and H_3C^- are strong enough bases to deprotonate the proton of the alkyne.

Reactions of terminal acetylenes:

H-C=C: Na
$$\xrightarrow{B_3}$$
 $\xrightarrow{B_3}$ $\xrightarrow{B_3}$ $\xrightarrow{H_3}$ $\xrightarrow{H_3}$

Acetylenes are key intermediates for making other types of compounds:

$$H_3C$$
 CH_2
 CH_3
 H^+ , H_2O or R_2BH then NaOH and H_2O_2
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 CH_8
 CH_8

Problem: How to convert acetylene (ethyne) to hexanal (6 carbon aldehyde) using any other necessary reagents

Approach:

$$H \longrightarrow H$$
 $+ Na NH_2$
 $H \longrightarrow H$
 $+ NH_3$
 $+ NH_3$
 $+ NH_3$
 $+ NH_4$
 $+ NH_5$
 $+ NH_5$