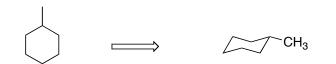

REVIEW:

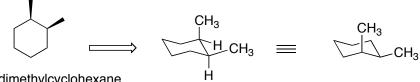
Conformations – different shapes a single molecule may assume via rotation around single bonds


Isomers - different compounds with same molecular formula – 2 basic types 1. structural/constitutional isomers

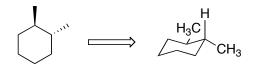
- compounds with same molecular formula
- 2. Stereoisomers same connectivity but different 3-D structure 2 sub-types
 - (a) diastereomers/diastereoisomers (geometric isomers)
 - (b) enantiomers (non-superposable mirror images of same molecule)

Cyclohexane – conformations

Eg. 1

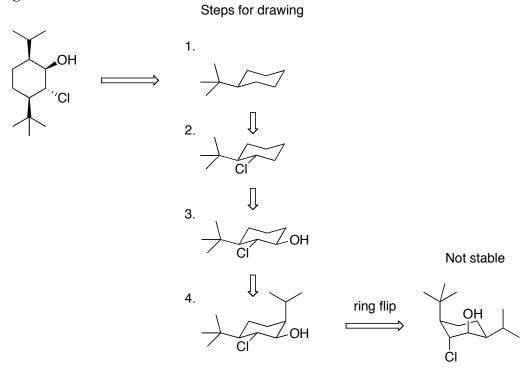


The below are all equally valid representations



- most stable conformation is when methyl group is equatorial

Eg. 2



cis-1,2-dimethylcyclohexane

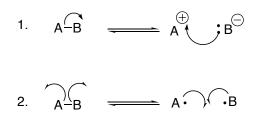
trans-1,2-dimethylcyclohexane

Eg. 3

Note on drawing the most stable conformation of substituted cyclohexanes:

- generally, draw chair conformation of cyclohexane -
- put the largest group in equatorial position -
- draw the next group on the correct side (face) with respect to the largest group -

Reactions of alkanes: Two will be considered


1) Combustion – already discussed heat R-H \rightarrow CO_2 + O_2 + H₂O R=Any alkyl group 2) Halogenation of alkanes Light (hv) R-H X_2 \rightarrow R-X ΗX ++R= any alkane (group), R-X = alkyl halide / haloalkane (X=Cl, Br, F); I_2 fails substitution reaction - substitute H with X eg. hυ CH₄ CH₃CI HCI + Cl_2 + methane methyl chloride chloromethane light energy, E = hvh = Planck's constant 6.6 $\times 10^{-34}$ joules-sec v = frequency of light hυ CH₃CI Cl_2 CH₂Cl₂ HCI + + methylene chloride dichloromethane hυ CH₂Cl₂ Cl₂ CHCl₃ HCI + + chloroform trichloromethane hυ CHCl₃ Cl₂ CCl₄ HCI + + carbon tetrachloride tetrachloromethane

Mechanism of reaction:

- step by step description of what happens during a reaction (hypothesis) Two kinds of mechanism-

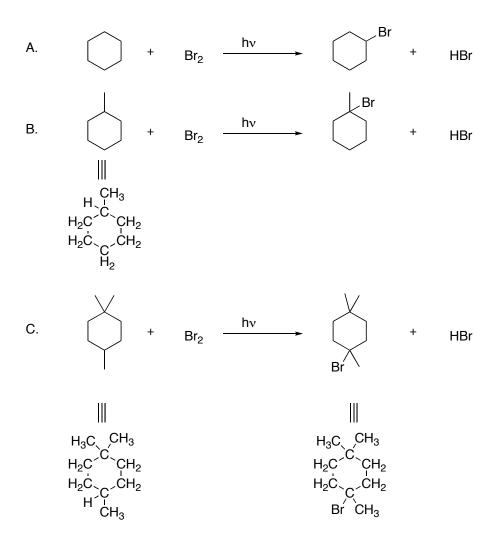
1. heterolytic : (both electrons in bond go to one atom)

2. homolytic : (one electron to each atom connected by a bond) radical rxn

Homolytic reactions (rarer than heterolytic reactions) - initiated by heat (Δ) or by light (hv)

Mechanism of halogenation of CH₄:

 $CH_4 + X_2 \xrightarrow{hv} CH_3X + HX$ X = F, Cl, Br

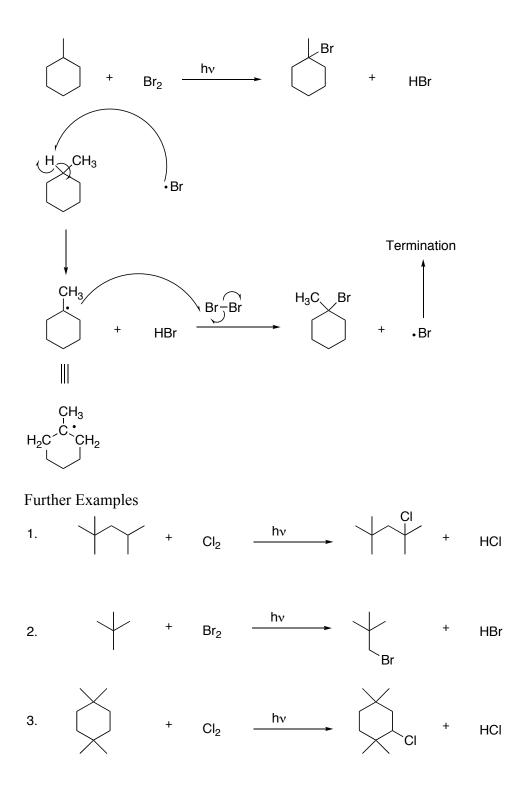

$$: \ddot{\Box} \stackrel{\frown}{\Box} \vdots \xrightarrow{\Delta} 2 : \ddot{\Box} \cdot \text{ initiation step}$$

$$: \ddot{\Box} \stackrel{\frown}{\Box} \vdots \xrightarrow{\Delta} 2 : \ddot{\Box} \cdot \text{ initiation step}$$

$$: \ddot{\Box} \stackrel{\frown}{\Box} : \stackrel{\frown}{\Box} \xrightarrow{\Box} 1 \xrightarrow{\Box}$$

Note: above mechanism applies to other halogens (F, Cl, Br)

Further examples -



Stability of radicals:

Increases with alkyl substitution. Alkyl groups are polarizable and donate electrons to electron deficient sites.

·CH ₃ <	·CH ₂ R	<	·CHR ₂ <	·CR ₃
methyl	primary		secondary	tertiary
radical	radical		radical	radical
(least stable)				(most stable)

eg.

