Acidity:

$$H_2O$$
 \longrightarrow H^+ $+$ HO^-

$$K_a = \frac{[H^+][HO^-]}{[H_2O]} = 10^{-15.7}$$

$$pK_a = -log(K_a)$$
 , for H_2O , $pK_a = 15.7$

i) Acidity of simple alcohols:

CH ₃ -OH	н ⁺	+	CH ₃ -O [—] methoxide	рКа = 16
H ₃ C-CH ₂ -OH	н ⁺	+	CH_3 - CH_2 - O^{\bigcirc} ethoxide	pKa = 17
H ₃ C H-C-OH H ₃ C isopropyl alcohol	н [†]	+	H₃C H−C−O [⊖] H₃C	pKa = 18
CH ₃ H ₃ C-C-OH CH ₃ 2-methyl-2-propanol tert-butyl alcohol	⊧ H	+	CH_3 H_3C-C-O CH_3 tert-butoxide (strong base)	pKa = 19
H₃C−O [⊖]		C H ₃ C-C	CH₃ ⊖ >−O [⊖]	

1 R (alkyl) group donates e⁻ more likely to form, more stable 3 R (alkyl) groups donate e less likely to form, less stable

Due to inductive electron donating effect of alkyl groups that make anion less stable (corresponding alcohol less acidic)

ii) Preparation of potassium tert-butoxide (equation not balanced):

- Why phenol is more acidic?
 - the anion formed (phenoxide) can be stabilized by conjugation onto benzene ring resonance forms can be obtained
 - the negative charge (electrons) on the oxygen is delocalized

- resonance forms of phenoxide anion:

Equilibrium rapidly gives phenoxide and water from phenol and sodium hydroxide

More examples:

1.

- Cl is electron with drawing (inductive, single bond), so anion is stabilized, giving a lower $\ensuremath{pK_a}$ value than phenol

- an additional resonance form can be obtained with 4-nitrophenol (in comparison to phenoxide, three sites indicated by arrows) which gives more stability to the anion form.

- the negative charge can only be placed on the positions shown by arrow, so that it is not possible to delocalize the negative charge onto the nitro group, thus $pK_a = 9.3$ instead of $pK_a = 7$ as for the 4-nitrophenol

4.

2,4-dinitrophenol – negative charge can be placed on two additional conjugated oxygens (indicated by straight arrows) as in the 4-nitrophenol - $pK_a = 4.5$ (approx.)

5.

2,4,6-trinitrophenol

(picric acid – explosive – match head)

 $- pK_a = 0.5 (approx.)$

- in the above two cases, the negative charge can be delocalized onto the doubly bonded oxygen of the nitro groups.

NaOH	+	HCl \rightarrow	NaCl	+	НОН
Strong		Strong	Weak		Weak
Base		Acid	Base		Acid

Synthesis (Preparation) of Alcohols: (Review of reactions seen earlier)

Petroleum

