Alcohols, Ethers, Carbohydrates

Nomenclature

Alcohol R-OH -OH is Hydroxy or Hydroxyl

$$R-O-R'$$
 Ether $R, R' = /= H$

Alcohol Nomenclature

CH₃OH - methanol (wood alcohol, or methyl alcohol) Toxic

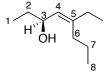
formaldehyde

CH₃CH₂OH - ethanol (grain alcohol or ethyl alcohol)

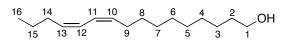
Rules:

Find the longest chain with the OH and Number from end to give –OH the lowest number. Drop "e" of alkane, and add "ol" CH₃CH₂CH₂OH - propanol (propan-1-ol, n-propanol, or n-propyl alcohol)

- 2-propanol (iso-propyl alcohol), rubbing alcohol


1-butanol butan-1-ol n-butanol

2-butanol


$$CH_3$$
 1
 $H_3C-C-OH$ 2
 CH_3 3

tert-butyl alcohol 2-methyl-2-propanol 2-methyl propan-2-ol

2-cyclohexen-1-ol or cyclohex-2-en-1-ol

3-(s)-5-ethyl-4(Z)-octen-3-ol

16C = hexadecane 10,12 = Diene 1 = ol

Hexadeca-10(Z)-12(Z)-dien-1-ol

Phenols (aromatic alcohols)

resonance forms

C₆H₅ phenyl

not recommended

benezene C₆H₆

dihydroxybenzene (catechol)

Common alcohols one needs to recognize:

Ethylene glycol (antifreezer) 1,2-dihydroxyethane ethane-1,2-diol

OH OH

glycerol glycerine

1,2,3-trihydroxypropane

12,3-propanetriol

Ether nomenclature

Rules: name both alkyl groups and add "ether"

$$H_2$$
 H_3C
 C
 O
 CH_3

$$H_2$$
 H_2 O

dimethyl ether methyl ether

ethyl methyl ether

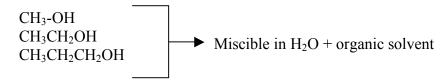
diethyl ether, ethyl ether, ether

alkene alcohol
$$7$$
 5 0 CH_3 ether

3-methoxy-3(Z)-hepten-1-ol

3-methoxy-(Z)-hept- 3-en-1-ol

tetrahydrocannabinol (THC) CANNABIS SATIVA (HEMP)


• 2-stereogenic centers

H₂, Pd

Physical Properties of Alcohols

R-O-H - can donate and accept hydrogen bonds

- polar, good solvents

- longer alcohols are generally not miscible with water.

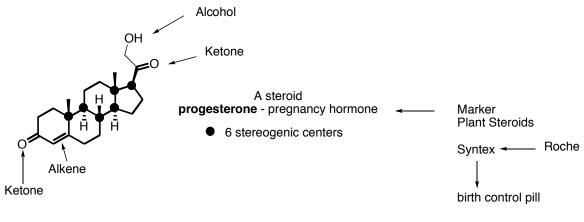
e.g. CH₃CH₂CH₂CH₂OH soluble in H₂O, but not fully miscible in all amounts

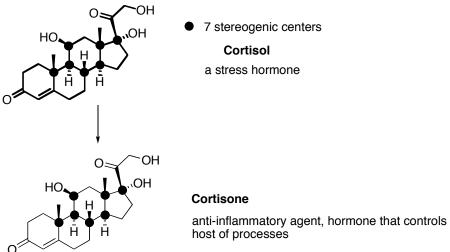
- less dense than water $\rho < 1.0$
- good solvents for polar + non-polar compounds

$$R-O-H----O-R$$
 H-bonding results in high B.P and M.P.

$$CH_3OH CH_3CH_3$$
 $MW 32 30$
 $BP + 65^{\circ}C - 88^{\circ}C$

Properties of Ethers


- non-polar (relatively), generally unreactive, especially to base
 - have dipole-dipole interactions,


ethyl ether

- H-bond acceptors but NOT H-bond donors,
- not miscible with water, good solvents for organic compounds.
- low B.P. and M.P. than alcohols but higher than hydrocarbons.

eg.
$$CH_3CH_2OCH_2CH_3$$
 BP = 35 °C

Some interesting examples – Functional Group & Structure Analysis

Structure elucidated by Prof. Reichstein (Nobel Prize)

and Dr. Von Euw

University of Basel