Chem 164/261 Nov 20, 2007

S_N2 Substitution- Nucleophilic 2 (rate depends on 2 concentrations Bimolecular)

 S_N2

- -Stereospecific (inversion of configuration)
- -Concerted
- -Bimolecular
- -Best if 1° halide
- -Works if 2° halide
- -Never if 3° halide
- -Never if leaving group is on C=C

Eg.

Leaving group ability Worst

Possible Leaving Groups - ACID required

Eg.

Excellent to Good Leaving Groups

The order of halide leaving group ability is due to solvation and size.

very good

Solvent: Polar, Aprotic (no O-H) Best

(R-OH, H₂O will work often)

eg.

poor

2° alkyl halide

Will these reactions work?

S_N1- Substitution Nucleophilic Unimolecular (rate depends on 1 concentration)

- stepwise (not concerted)
- carbocation intermediate
- not stereospecific

Tertiary butyl alcohol

Mechanism

To do the reverse? Sn1 only possible mechanism for substitution as 3°

$$\begin{array}{c|c} CH_3 & \stackrel{\bigoplus}{\delta} \stackrel{\bigcirc}{\to} \\ H_3C & \stackrel{\bigoplus}{\mid} Br & \stackrel{\bigoplus}{\mid} H_2SO_4 \end{array} \rightarrow \begin{array}{c|c} CH_3 & \stackrel{\frown}{\circ} \\ H_3C & \stackrel{\longleftarrow}{\mid} OH + Br \\ \hline CH_3 & CH_3 \end{array}$$

Demo.

$S_N 1$

- -Best if 3° carbocation can form
- -Never on 1° alkyl halides
- -Leaving groups same as $S_N 2$

OR and OH work if strong acid present HOR and HOH are leaving groups

S_N1 and S_N2 can compete with E1 and E2 (alkenes formed)

Base: Nucleophile: For substitution

For elimination For substitution

Can be a base and attach to H $^{\scriptsize\textcircled{+}}$

How can you tell which?

 \bigcirc OH small \longrightarrow Good S_N

○ O-CH₃

$$\stackrel{+}{Na}$$
 $\stackrel{-}{OH}$ + $\stackrel{+}{H_3}$ CH₂C-OH + Nal

Elimination not possible as no adjacent carbon with H

achiral + achiral — overall achiral product