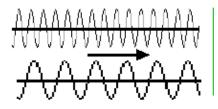
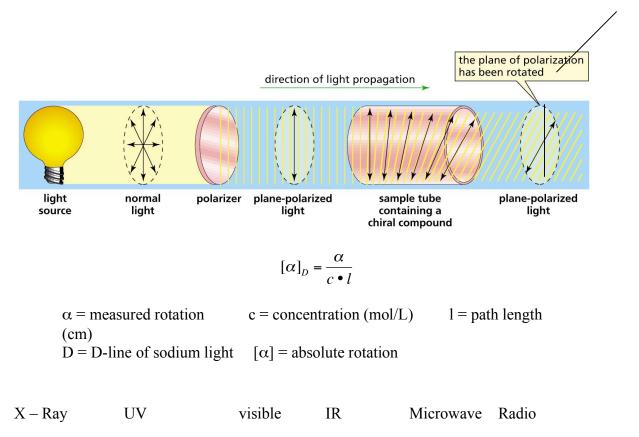


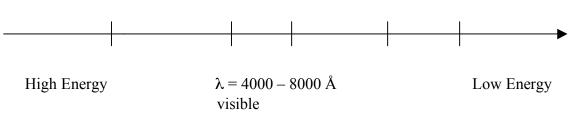
Light: Electromagnetic radiation


Light $\rightarrow E = hv = \frac{hc}{\lambda}$ v = frequency E = energy h = Planck's constant $\lambda = \text{wavelength}$ c = speed of light

Light has oscillating Electric field (red) combined with magnetic field (black)

End on view of vector components of normal light

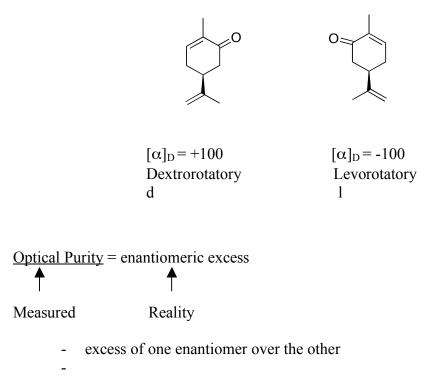



High energy

Low energy

long wavelength = short frequency

The plane has been rotated by α degree to get the maximum transmission



Optical Rotation

 $[\alpha]_D$ = Absolute Rotation

Pure enantiomers rotate in equal but opposite direction

Eg.Assume pure enantiomer has 100° rotation (pure R isomer = -100° ; S isomer = $+100^{\circ}$)

R	S	Rotation (°)	Optical purity
100%	0%	-100	100%
75%	25%	-50	50%
50%	50%	0	0%
25%	75%	+50	50%
0%	100%	+100	100%

Racemic Mixture = Racemate

50 : 50 mixture of enantiomers $[\alpha]_D = 0$

Optical purity =
$$\frac{[\alpha]_{observed}}{[\alpha]_{pure-enantiomer}} \ge 100\%$$

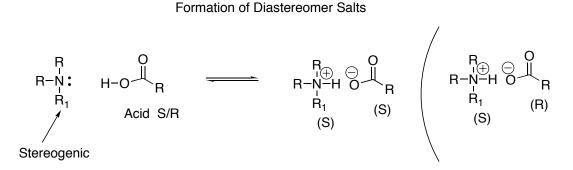
Resolution: Separation of enantiomers.

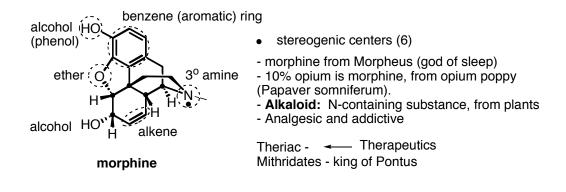
- Always need chiral agents
- Physical separation (crystallization of specific enantiomer)
- "reaction" with chiral substance to get 2 diastereomers, which can be separated.

Ex) Tartaric Acid – mixture of meso, RR, and SS

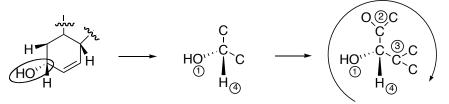
соон	COOH	COOH	COOH
н—он	H - ^B- OH	H <mark>⊢</mark> R-OH	HO= ^S =H
н—он	H - ^S- OH	HO - R -H	H= ^S =OH
соон	COOH	COOH	COOH
Fisher projection: Horizontal groups toward you and vertical groups back	Meso Achiral	R,R	S,S

Resolution by reaction to diasteromers (these can be separated by conventional means)


RACEMATE

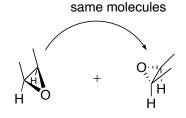

 $Acid_{RR} + Acid_{SS}$ 50/50 mix

reaction (S-enatiomer - optically pure reactant)

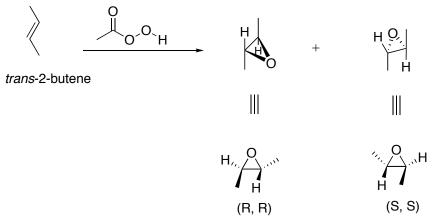

Reactant(S) -Acid_{RR} Reactant(S) - Acid_{SS} S R R S S S

diastereomers

Assign R/S stereochemistry to stereogenic centre


CW rotation (but H is up) = S-configuration

Stereospecific addition reaction: (see reactions of alkenes)


Eg. Epoxidation:

о́^{,0}`н

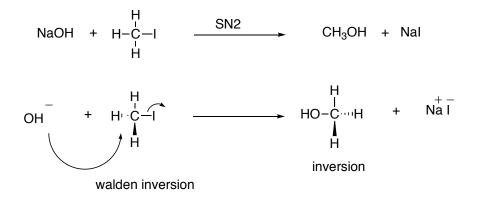
cis-2-butene

achiral - meso compounds (plane of symmetry)

both starting materials are achiral (not chiral), but each of the products can be chiral
however they are formed as a 1:1 mixture of enantiomers – racemic mixture
Generally get pure (or partially pure) chiral products only if one of the reagents is chiral

Substitution Reactions:

S_N2 reaction:


S = Substitution

N = nucleophilic

2 = bimolecular reaction (rate of reaction depends on 2 reagents)

- stereospecific reaction
- inversion of configuration
- concerted reaction
- rate depends on two reagent concentration
- favored for primary 1° carbons

