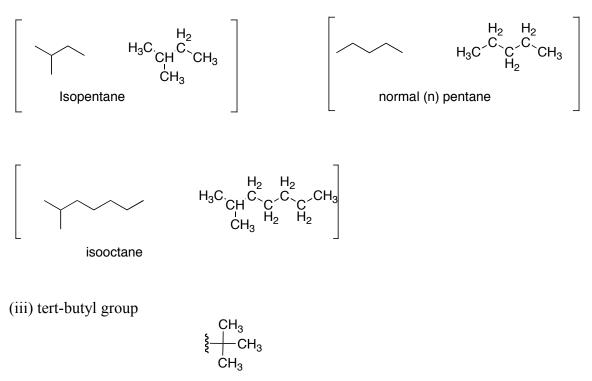

Groups (part of an alkane structure)

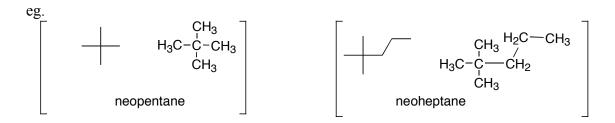
- in naming the particular group, drop the "ane" part and add "yl" to the name
- for example, meth<u>ane</u> \rightarrow methyl

(i) Methane $- CH_4$



(ii) isopropyl group

isopropyl group


- add "iso" to the common name of the alkane when this type of group is present in the molecule

Eg:

tert-butyl group

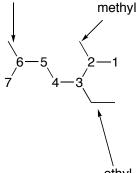
- molecule with tert-butyl group is also called with the prefix "neo"

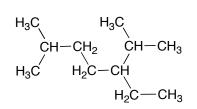
Systematic Nomenclature (IUPAC)

RULES:

- 1. use common name for straight chain alkanes
- 2. find the longest chain with maximum number of branches
- 3. number from end of the chain, so 1st branch point has lowest number
- 4. name the chain, then add prefixes (for the groups attached) with number and name the groups attached

eg.

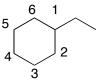

n-butane


isobutane (common name) 2-methyl propane (systematic name)

Number	2	3	4	5	6	7	8	9
Prefix	di	tri	tetra	penta	hexa	hepta	octa	nona

eg.

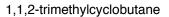
methyl

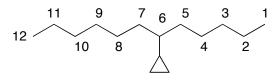

3-ethyl-2,6-dimethylheptane

ethyl

Ring Structures and Naming:

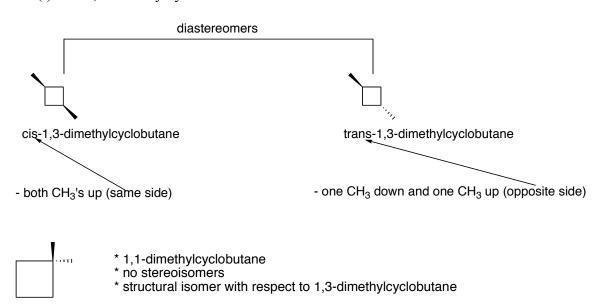
- start with numbering at point of maximum branches


eg.

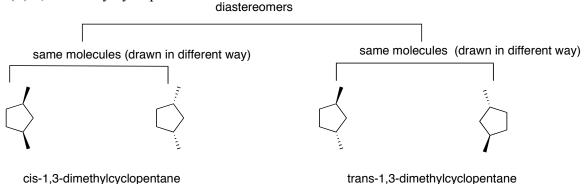


cyclohexane

1-ethylcyclohexane

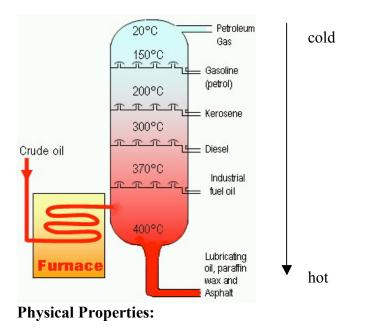


6-cyclopropyldodecane Isomers – have same molecular formula but different compounds

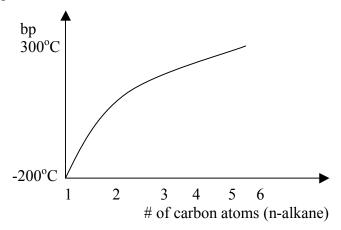

- 1. structural/constitutional isomers
- compounds with same molecular formula and different names, numbers
- 2. Stereoisomers have normally same name but different 3-D structure
 - (a) diastereomers/diastereoisomers (geometric isomers)
 - (b) enantiomers (mirror images of same molecule)

eg.

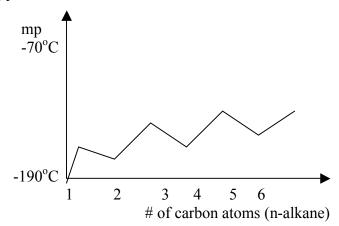
(i) 1,3-dimethylcyclobutane


(ii) 1,3-dimethylcyclopentane

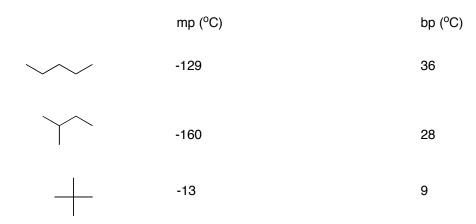
Sources of alkanes + Physical properties


- sun: 99% of earth's energy
- 30% of sun's energy reflected from earth
- 47% energy heating earth
- 23% energy water cycle
- 0.2% energy wind
- 0.02% energy photosynthesis ($CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$)
- 10^{11} metric tons of CO₂ fixed per year
- $C_6H_{12}O_6 \rightarrow$ petroleum and natural gas (CH₄)
- Petroleum \rightarrow >500 hydrocarbon

Distillation of petroleum


- hydrocarbons alkanes are non-polar H and C have similar electronegativity -
- soluble in other organic solvents (like dissolves like) -
- immiscible with water (not infinitely soluble in water) -

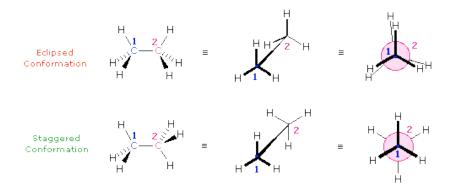
boiling point trend:


increasing the straight chain length increases the bp. _

melting point trend:

Density (ρ - RHO):

- hydrocarbons are less dense than water (1.0 g/cm^3) density ranges from $0.65 0.75 \text{ g/cm}^3$ -
- -


- n-pentane has high bp due to multiple contacts of straight chains (London Forces)
- neopentane has high mp due to round shape and well-packed crystal structure

Conformations

- different 3-D shapes a molecule can assume by rotation around single bonds

eg.

Ethane : $H_3C - CH_3$

