Energy

- Kinetic (movement) in molecule $=$ Heat
- Translation \rightarrow movement forward and backward
- Rotation \rightarrow Tumbling
- Bending and stretching \rightarrow Measure by infrared radiation (IR)
- Potential energy \rightarrow Reactivity and bond energy

Bond	Bond Energy $(\mathrm{kcal} / \mathrm{mol})$
$\mathrm{H}-\mathrm{C}$	99
$\mathrm{H}-\mathrm{O}$	111
$\mathrm{C}-\mathrm{C}$	83
$\mathrm{C}=\mathrm{O}$	179
$\mathrm{O}=\mathrm{O}$	119

Ex) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \xrightarrow{\Delta} \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}-$ Exothermic reaction (releases Energy (E))

Reaction Coordinate

- $\Delta \mathrm{G}=$ change in energy of system or change in Gibbs free energy.

Temperature in ${ }^{\circ} \mathrm{K}$
$\left({ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273\right)$

$$
\Delta \mathrm{E}_{\text {reaction }}=\Delta \mathrm{E}_{\mathrm{SM}}-\Delta \mathrm{E}_{\mathrm{pdt}}
$$

For CH_{4} : $4 \times \mathrm{C}-\mathrm{H}$ bonds $=4 \times 99 \quad=396 \mathrm{kcal} / \mathrm{mol} \quad \Delta \mathrm{E}_{\mathrm{SM}}=$ sum of bonds $2 \times \mathrm{O}=\mathrm{O}=2 \times 119=238 \mathrm{kcal} / \mathrm{mol} \quad$ broken (enthalpy) $\Delta \mathrm{E}_{\mathrm{SM}} \quad=634 \mathrm{kcal} / \mathrm{mol}$

For products:

$$
\begin{aligned}
2 \mathrm{C}=\mathrm{O}=2 \times 179 & =358 \mathrm{kcal} / \mathrm{mol} \\
4 \mathrm{H}-\mathrm{O}=4 \times 111 & =\underline{444 \mathrm{kcal} / \mathrm{mol}} \\
\Delta \mathrm{E}_{\mathrm{pdt}} & =802 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

$\Delta \mathrm{E}_{\text {pdt }}=$ sum of bonds formed
$\Delta \mathrm{E}_{\text {reaction }}=634 \mathrm{kcal} / \mathrm{mol}-802 \mathrm{kcal} / \mathrm{mol}=-168 \mathrm{kcal} / \mathrm{mol}$ (exothermic reaction, energy released)
ex)

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}
$$

$\mathrm{K}_{\mathrm{eq}}=$ equilibrium constant $=[\mathrm{C}][\mathrm{D}] \quad[\mathrm{C}]=$ concentration of compound C [A][B]
$\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{eq}}$
$\mathrm{R}=$ gas constant $=0.082 \mathrm{~L} \cdot \mathrm{~atm}$
$\mathrm{mol} \cdot \mathrm{K}$
$\mathrm{T}=$ temperature in ${ }^{\circ} \mathrm{K}$
$\Delta \mathrm{G}=$ change in energy of system (determines equilibrium)
$\mathrm{E}_{\mathrm{a}}=$ activation energy \rightarrow determines rate of reaction

Endothermic Reaction

Reaction Coordinate

Acids - Bases

- Bronsted - Lowry
- An acid donates proton $\left(\mathrm{H}^{+}\right)$
- A base accepts a proton
- Lewis
- An acid accepts a pair of electrons
- A base donates a pair of electrons

Definition

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{eq}}=\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} & \begin{array}{l}
\mathrm{K}_{\mathrm{a}}=\text { acidity constant } \\
\mathrm{pK}_{\mathrm{a}}=-\operatorname{logK}_{\mathrm{a}}
\end{array}
\end{array}
$$

Ex

$$
\begin{aligned}
& \mathrm{H}-\mathrm{O}-\mathrm{H} \oplus \\
& \mathrm{H}
\end{aligned} \stackrel{\ominus}{: \ddot{O} \mathrm{H}} \quad \mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][-\mathrm{OH}]}{[\mathrm{HOH}]}=10^{-15.7}
$$

Ex \#2)

gas

$$
\mathrm{pK}_{\mathrm{a}}=36
$$

- NH_{3} is less acidic than $\mathrm{H}_{2} \mathrm{O}$ by a factor of $\sim 10^{20}$ because N is less electronegative than O .

Ex \#3)
$\mathrm{H}-\mathrm{CH}_{3} \rightleftharpoons \stackrel{\oplus}{\mathrm{H}}+{ }^{\ominus}: \mathrm{CH}_{3} \quad \mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3}\right]}{\left[\mathrm{CH}_{4}\right]}=10^{-46}$

$$
\mathrm{pK}_{\mathrm{a}}=46
$$

C is less electronegative than N or O

Alkanes (Hydrocarbons) - Lecture Outline and Assignment 2

- Contain C and H (hydrocarbons)
- Contain only single bonds (C-H, C-C)
- All carbons are sp^{3} hybridized (bond angle of 109°)
- Held together by London (dispersion) forces
$\mathrm{Ex} \# 1) \mathrm{CH}_{4}$, methane

Ex \#3) $\mathrm{C}_{3} \mathrm{H}_{8}$, propane

$\mathrm{Bp}=-42^{\circ} \mathrm{C}$
$\mathrm{Ex} \# 2) \mathrm{C}_{2} \mathrm{H}_{6}$, ethane

Ex \#4) $\mathrm{C}_{4} \mathrm{H}_{10}$, butane

$\mathrm{Ex} \# 5) \mathrm{C}_{4} \mathrm{H}_{10}$, isobutane

- Isomers (structural or constitutional) are different compounds that have same molecular formula. They have different physical properties (e.g. mp, bp, odour, biological effects)

- No rings: general formula is $\mathrm{C}_{\mathrm{N}} \mathrm{H}_{2 \mathrm{~N}+2}$
- ex) $\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow$ Decane

Cycloalkanes

- C-C-C Bond angle (${ }^{\circ} 60$)
- Highly reactive due to angle strain.

Ex \#2) Cyclobutane, $\mathrm{C}_{4} \mathrm{H}_{8}$

Ex \#4) Cyclohexane, $\mathrm{C}_{6} \mathrm{H}_{12}$

Has 2 degrees of unsaturation

Each deviation of 2 hydrogens from the $\mathrm{C}_{\mathrm{N}} \mathrm{H}_{2 \mathrm{~N}+2}$ formula is a degree of unsaturation (means ring or double bond in hydrocarbon)

