Energy

- Kinetic (movement) in molecule = Heat
 - Translation \rightarrow movement forward and backward
 - \circ Rotation \rightarrow Tumbling
 - Bending and stretching \rightarrow Measure by infrared radiation (IR)
- Potential energy \rightarrow Reactivity and bond energy

Bond	Bond Energy (kcal/mol)	
H-C	99	
H-O	111	
C-C	83	
C=O	179	
0=0	119	

Ex) $CH_4 + 2 O_2 \xrightarrow{\Delta} CO_2 + 2 H_2O - Exothermic reaction (releases Energy (E))$

Reaction Coordinate

- ΔG = change in energy of system or change in Gibbs free energy.

 $\Delta E_{reaction} = \Delta E_{SM} - \Delta E_{pdt}$

For CH₄: $4 \ge C-H$ bonds = $4 \ge 99$ = 396 kcal/mol $2 \ge 0$ = $2 \ge 119$ = 238 kcal/mol ΔE_{SM} = sum of bonds broken (enthalpy) ΔE_{SM}

For products:	2 C=O =	2 x 179 = 358 kcal/mol	ΔE_{pdt} = sum of bonds formed
	$4 \text{ H-O} = 4 \text{ x } 111 = \frac{444 \text{ kcal/mol}}{444 \text{ kcal/mol}}$		
	ΔE_{pdt}	= 802 kcal/mol	

 $\Delta E_{reaction} = 634 \text{ kcal/mol} - 802 \text{ kcal/mol} = -168 \text{ kcal/mol}$ (exothermic reaction, energy released)

ex)

$$A + B \longrightarrow C + D$$

 K_{eq} = equilibrium constant = [C][D] [C] = concentration of compound C [A][B]

 $\Delta G = -RTlnK_{eq}$ $R = gas \ constant = 0.082 \ \underline{L \cdot atm}_{mol} \cdot K$ $T = temperature \ in \ ^{o}K$ $\Delta G = change \ in \ energy \ of \ system \ (determines \ equilibrium)$ $E_{a} = activation \ energy \ \rightarrow \ determines \ rate \ of \ reaction$

Endothermic Reaction

Reaction Coordinate

Acids - Bases

- Bronsted Lowry -
 - An acid donates proton (H^+)
 - A base accepts a proton
- Lewis
 - An acid accepts a pair of electrons
 A base donates a pair of electrons

Definition

$$H \xrightarrow{\frown} A \qquad \qquad H^{\oplus} + \overset{\bigcirc}{:} A \qquad \qquad K_{eq} = K_a = \underbrace{[H^+][A^-]}_{[HA]} \qquad \qquad K_a = acidity \ constant \\ F = -log K_a$$

Ex

H-O-H
$$\longrightarrow$$
 H + \bigcirc K_a = [H⁺][$^{-}$ OH] = 10^{-15.7}
[HOH]

$$pK_a = -logK_a = 15.7$$

Ex #2)

$$\begin{array}{c} \text{H-NH}_2 \\ \text{Ammonia} \\ \text{gas} \end{array} \xrightarrow{(+)} H + \stackrel{(-)}{\underset{}} \overset{(+)}{\underset{}} H_2 \\ \end{array}$$

 \bigcirc

 \frown

$$K_a = [\underline{H}^+][\underline{NH}_2] = 10^{-36}$$

[NH₃]

$$pK_a = 36$$

- NH₃ is less acidic than H₂O by a factor of $\sim 10^{20}$ because N is less electronegative than O.

Ex #3)

$$H-CH_3 \longrightarrow H + CH_3$$

$$K_a = [H^+][CH_3] = 10^{-46}$$

[CH₄]

 $pK_a = 46$

C is less electronegative than N or O

Alkanes (Hydrocarbons) – Lecture Outline and Assignment 2

- Contain C and H (hydrocarbons) -
- Contain only single bonds (C-H, C-C) -
- All carbons are sp³ hybridized (bond angle of 109°)
- Held together by London (dispersion) forces -

Ex
$$\#1$$
) CH₄, methane

Ex #2) C_2H_6 , ethane

$$\begin{array}{ccc} H & H & H \\ H & H & Bp = 161^{\circ}C \\ H & H & H \end{array} \qquad \qquad \begin{array}{ccc} H & H & H \\ H & H & H \\ H & H & H \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H & H \\ H & H \\ H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ \end{array} \qquad \qquad \begin{array}{ccc} H & H \\ H &$$

Ex #3) C_3H_8 , propane

Ex #4) C_4H_{10} , butane

Ex #5) C_4H_{10} , isobutane

- Isomers (structural or constitutional) are different compounds that have same molecular formula. They have different physical properties (e.g. mp, bp, odour, biological effects)

No rings: general formula is C_NH_{2N+2} _ ◦ ex) $C_{10}H_{22}$ → Decane

Cycloalkanes

Ex #1) Cyclopropane, C₃H₆

C-C-C Bond angle (°60)Highly reactive due to angle strain.

Ex #2) Cyclobutane, C₄H₈

Ex #4) Cyclohexane, C₆H₁₂

Each deviation of 2 hydrogens from the $C_{N}H_{2N\!+\!2}$ formula is a degree of unsaturation (means ring or double bond in hydrocarbon)