Formal Charge:

1. Sodium Nitrate – NaNO₃

Double bonded oxygen: +8 (number of protons) -2 (1s electrons) -4 (unshared electrons) $\frac{1}{2} \ge 4 = -2$ (1/2 of shared electrons) 0 Single bonded oxygen (both): +8 (number of protons) -2 (1s electrons) -6 (unshared electrons) $\frac{1}{2} \ge \frac{-1}{2} (\frac{1}{2} \text{ of shared electrons})$ -1

2. Sodium nitrite (NaNO₂)

between Na⁺ and NO₂⁻ → ionic bond
between N and O in NO₂⁻ → covalent bond

Double bonded oxygen:	Single bonded oxygen:
+8 (number of proton)	+8 (number of proton)
-2 (1s electron)	-2 (1s electron)
-4 (unshared electrons)	-6 (unshared electrons)
$\frac{1}{2} \ge 4 = -2$ (1/2 of shared electrons)	$\frac{1}{2} \ge \frac{1}{2} = \frac{1}{2} (1/2 \text{ of shared electrons})$
0	-1

Resonance:

- move the electrons, keeping the position of atoms same \rightarrow gives different picture of same molecule
- maintain inert gas configuration around each atom
- avoid separation of charges
- avoid like-charges on adjacent atoms

Eg. Hydrogen gas, H₂:

- they are all resonance forms but not necessarily correct
- H-H is the best resonance form
- Double headed arrow (<->) is used indicate resonance forms

 $\dot{H} \rightarrow H \leftrightarrow H^+$ H^+ "movement of an electron pair " \sim " movement of single electron

* this is called "arrow pushing" \rightarrow bookkeeping of electrons

Resonance structure:

1. nitrite anion (NO_2^{-})

2. nitrate anion (NO_3)

Intermolecular forces: (forces present between molecules)

- steric effects repulsion of filled (inert gas configuration) shells of electrons
- Attractive intermolecular forces:
 - i) Hydrogen bonding strongest on per atom basis (eg. base recognition in forming DNA helix)
 - ii) Dipole-dipole interaction
 - iii) London forces (temporary dipole) weakest on per atom basis (hydrophobic bonding interaction of protein with drugs)

Electronegativity:

- An atom's desire for electrons (negative charge).
- in Periodic table, electronegativity increases as you go from left to right (up to inert gases which are not electronegative) and as you go upwards
- Eg. Fluorine is the most electronegative atom

Dipole moment:

Eg.

1. Methyl chloride, CH₃Cl, ClCH₃

- H and C have similar electronegativity values
- Cl is very electronegative due to the fact that it only needs one electron to get inert gas configuration
- Electron density is pulled towards chlorine atom so a net dipole toward chlorine atom net dipole is the vector sum of individual bond dipoles

* dipoles in different molecules tend to line-up with each other (partial positive / negative charge on the molecule)

2. Dichloromethane, methylene chloride, CH₂Cl₂

3. trichloromethane, chloroform, CHCl₃

4. tetrachloromethane, carbon tetrachloride, CCl₄ (TOXIC)

Hydrogen bonding:

- need hydrogen directly attached to a very electronegative atom (halogen, O, N) for Hydrogen bonding between molecules of same type
- strongest intermolecular attractive force -

- HF, H₂O and NH₃ form hydrogen bonds
- (CH₃)₃N forms no hydrogen bond itself, but if dissolved in water, it forms hydrogen bonds with water

London Forces (temporary dipole):

- also know as dispersion forces -
- principle effect in hydrophobic interaction

Atoms	boiling point
	Small atom
Не	-269 °C
Ne	-246 °C
Ar	-186 °C
Kr	-153 °C
Xe	-108 °C large atom

Hydrophobic interaction: - hexane

- the larger the atom (expanded electron density), the easier the formation of dipoles
- two hexane molecules have a small attraction to one another at room temperature (hydrophobic interaction)
- longer alkane chains can have such large forces to become solid-like wax

Reactivity:

Reactants: CH_4 and O_2 Products: CO_2 and H_2O E_a : activation energy $\Delta E = \Delta G$: energy (enthalpy) change for the reaction * this reaction is an exothermic reaction, heat is released during reaction