Carbon (C)

- For carbon to obtain inert gas configuration it can either give up 4 or gain 4 electrons.
- Since full loss or gain of electrons is unfavorable (would generate -4 or +4 charge), carbon shares 4 electrons to form "covalent bonds".
e.g. CH_{4}, methane

- Atomic orbitals of carbon are hybridized to give $4 \mathrm{sp}^{3}$ orbitals.
- Carbon is bonded with 4 H atoms (covalent bonds) wher each atom has the inert gas configuration
sp^{3} hybridization
- Tetrahedral geometry
- Single bonds
- Bond angles of 109°
sp^{2} hybridization
- 3 atoms connected to carbon.
- Mixing of the 2 s and two out of the three 2 p orbitals. One p-orbital left over.
- Planar geometry
- Usually double bonds
- Bond angles of 120°

Ex) ethylene, ethene

- When atomic orbitals overlap they form molecular orbitals.
- Double bond contains one σ bond and one π bond.
- π bond fixes geometry, does not allow rotation along double bond.
- σ bond has free rotation.

Linear Combination of Atomic Orbitals (LCAO)

- Gives molecular orbitals (MO)
- Overlap of s atomic orbitals (AO) \rightarrow gives $\operatorname{sigma}(\sigma)$ MO (cylindrical symmetry)
- Overlap of $\mathrm{p} \mathrm{AO} \rightarrow$ gives $\mathrm{pi}(\pi) \mathrm{MO}$

- Difference between AO and MO $\rightarrow \mathrm{AO}$ present on an atom while MO present between two atoms when bond is formed.
- In terms of strength $\rightarrow \sigma$ bond is stronger than a π bond. But a double bond is stronger than a single bond because double bonds contain two bonds (σ-bond $+\pi$ bond).
sp hybridization
- Two atoms bonded to central atom
- Linear geometry
- Usually triple bonds
- Bond angle is 180°

ex) Acetylene

- Hybridization occurs in order to optimize geometry and decrease non-bonded interactions between atoms having inert gas configuration.

Energetics of Forming Bonds

ex) H_{2}

$1 \AA$ is the average $\mathrm{H}-\mathrm{H}$ bond distance

- Single bonds of H to C, O, N, F are $\sim 1 \AA=10^{-8} \mathrm{~cm}$
- Single bonds between C, N, or O are $\sim 1.5 \AA$
- Double bonds between C, N, or O are $\sim 1.35 \AA$
- Triple bonds between C, N, or O are $\sim 1.2 \AA$

Representation of Molecules

- Show only electrons in outer (valence) shell
- Non-bonding electrons may not be shown
- Use element symbols, but carbon can be represented by point of angle or end of line
- Hydrogens and bonds to them from carbon are optional, show others
ex) $\mathrm{C}_{3} \mathrm{H}_{6}$ (propene)

- ring strain can alter normal bond angles

Formal Charge

- Convention to keep charges or know where they are
- $\quad \sum$ (sum of) of formal charges $=$ charge on molecule

Rules

- Add number of protons in nucleus
- Subtract number of inner shell electrons
- Subtract number of unshared electrons
- Subtract $1 / 2$ of the number of shared outer shell electrons
ex)

$$
\begin{aligned}
& \text { Formal charge on } \mathrm{N}=+7 \\
& \\
& \begin{aligned}
& -2 \text { (1s electron) } \\
& 0 \text { (unshared electrons) } \\
(1 / 2 \times 8)= & \frac{-4(1 / 2 \text { unshared electrons) }}{+1}
\end{aligned}
\end{aligned}
$$

