Quantitative analysis of organic compound (from last class)

1. Calculation of \% composition:
$\%$ of $\mathrm{C}=\frac{2.82 \mathrm{mg} \text { of } \mathrm{C}}{4.34 \mathrm{mg}}=65.1 \%$
$\%$ of $\mathrm{H}=\underline{0.383 \mathrm{mg} \text { of } \mathrm{H}}=8.83 \%$
4.34 mg
$\%$ of $\mathrm{O}=100 \%-65.1 \%-8.83 \%=26.1 \%$
2. Determining the empirical formula:

- Definition: empirical formula is ratio of atoms to each other in a molecular formula
- Three steps to calculate the empirical formula:
i) divide each percentage (\%) by the atomic weight of element \rightarrow crude ratio
ii) divide all crude ratio by the smallest crude ratio \rightarrow refined ratio
iii) Multiply the refined ratio by an integer value to get integral ratio

\% Composition	Crude ratio	Refined ratio	Integral ratio
65.1 \% C	$65.1 / 12.0=5.42$	$5.42 / 1.63=3.34$	$3.34 \times 3=10$
$8.83 \% \mathrm{H}$	$8.83 / 1.01=8.76$	$8.76 / 1.63=5.39$	$5.39 \times 3=16$
$26.1 \% \mathrm{O}$	$26.1 / 16.0=1.63$	$1.63 / 1.63=1.00$	$1.00 \times 3=3$

From the integral ratio, the empirical formula is $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$. Since the molecular weight is given as $184 \mathrm{~g} / \mathrm{mol}$, the molecular formula is also $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$.

Note: suppose the molecular weight is given as $368 \mathrm{~g} / \mathrm{mol}$, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{6}$.

Atomic theory:

- Neil Bohr (1913) - won his Nobel prize for his atomic theory - NOT fully correct

- the neutrons and protons occupy a dense central region called the nucleus
- the electrons orbit the nucleus much like planets orbiting the Sun
- de Broglie (1924) - his 12 page PhD thesis won him the Nobel prize
- he proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave-particle duality)
- the orbitals of an atom are described by wave functions (mathematical equations) -
they have no direct physical meaning but when squared, provide electron density
$-(\text { orbital })^{2}=$ electron density distribution
For hydrogen (H) atom: $>95 \%$ of electron density is found within $1 \AA=10^{-8} \mathrm{~cm}$

Orbitals:

1. S-orbital-spherical shaped (electron density)

2. p-orbital - dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Basic principles:

- like charges repel each other
- unlike charges attract each other
- atoms want to be in inert gas electron configuration (is electronic)

Atoms	Protons $(+)$	Neutrons	1s electrons	2s electrons	2p electrons
H	1	0	1		
He	2	2	2		
Li	3	3	2	1	

Energy (E) level diagram for an atom:

Rules for filling electron - AUFBAU rule:

- add electron to lowest energy orbital available
- maximum two electron per orbital (each having opposite spin quantum number)
- Pauli Exclusion principle
- fill 1 electron into each orbital of same energy (degenerate orbital), then add second electron - Hund rule

Lithium (Li)

Fluorine (F)

Neon (Ne)

- all elements want inert gas configuration (e.g. Ne) and from above diagram both Li and F are unhappy with unfilled orbitals (not in inert gas configuration)
- Li could lose $1 \mathrm{e}^{-}$from 2 s orbital to be isoelectronic to He (as Li^{+}) and F could gain $1 \mathrm{e}^{-}$to be isoelectronic to Ne (as F^{-})

F^{-}

- in space these ions would be attracted to each other
- in solution they might be separated due to solvation (e.g. water would surround)
- in solid, they would form a crystalline solid structure

Electronic configuration of carbon (C):

- atomic number $=6$
- atomic weight $=12$
- other isotopes of carbon
$-{ }^{13} \mathrm{C}\left(6 \mathrm{p}^{+}, 7 \mathrm{n}\right)$ is a stable isotope, 1% natural abundance
$-{ }^{14} \mathrm{C}\left(6 \mathrm{p}^{+}, 8 \mathrm{n}\right)$ is radioactive, $\mathrm{t}_{1 / 2}=5700 \mathrm{yrs},{ }^{14} \mathrm{C}$ dating of organic material

Carbon (C)

- need to gain or lose $4 \mathrm{e}^{-}$to get inert gas configuration
- so, carbon makes 4 bonds to share $4 \mathrm{e}^{-}$ (covalent bonding)

Methane, CH_{4} :

- tetrahedral geometry
- electron density is equidistance from nucleus
- four covalent bond between the carbon atom and the hydrogen atoms
- the angle between two H -atoms $=109^{\circ}$

Hybridization:

- mixing of atomic orbitals (with wrong geometry for bonding) to form the hybrid orbitals that have correct geometry for bonding

Figure: Hybridization of $2^{\text {nd }}$ shell s orbibtals (one) and p orbitals (three) of carbon

- the 2 s orbital and 2 p orbitals of carbon are mixed (hybridized) to form the four degenerate sp^{3} orbitals
- note: sp^{3} comes from the fact that one s-orbital and three p-orbitals are mixed
- once the hybrid orbitals are formed, four hydrogen atoms can share the four electrons of the outer (bonding) shell of carbon to form four covalent bonds
- now, carbon is isoelectronic to neon and hydrogen is isoelectronic to helium

