Quantitative analysis of organic compound (from last class)

1. Calculation of % composition:

% of C = <u>2.82 mg of C</u> = 65.1 % 4.34 mg % of H = 0.383 mg of H = 8.83 %

4.34 mg % of O = 100% - 65.1% - 8.83% = 26.1 %

2. Determining the empirical formula:

- Definition: empirical formula is ratio of atoms to each other in a molecular formula
- Three steps to calculate the empirical formula:
 - i) divide each percentage (%) by the atomic weight of element \rightarrow crude ratio
 - ii) divide all crude ratio by the smallest crude ratio \rightarrow refined ratio
 - iii) Multiply the refined ratio by an integer value to get integral ratio

% Composition	Crude ratio	Refined ratio	Integral ratio
65.1 % C	65.1 / 12.0 = 5.42	5.42 / 1.63 = 3.34	$3.34 \ge 3 = 10$
8.83 % H	8.83 / 1.01 = 8.76	8.76 / 1.63 = 5.39	5.39 x 3 = 16
26.1 % O	26.1 / 16.0 = 1.63	1.63 / 1.63 = 1.00	$1.00 \ge 3 = 3$

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Since the molecular weight is given as 184 g/mol, the molecular formula is also $C_{10}H_{16}O_3$.

Note: suppose the molecular weight is given as 368 g/mol, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $C_{20}H_{32}O_6$.

Atomic theory:

- Neil Bohr (1913) - won his Nobel prize for his atomic theory - NOT fully correct

- the neutrons and protons occupy a dense central region called the nucleus
- the electrons orbit the nucleus much like planets orbiting the Sun

- de Broglie (1924) his 12 page PhD thesis won him the Nobel prize
 he proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave-particle duality)
- the orbitals of an atom are described by wave functions (mathematical equations) they have no direct physical meaning but when squared, provide electron density
 (orbital)² = electron density distribution

For hydrogen (H) atom: >95% of electron density is found within $1\text{\AA} = 10^{-8}$ cm

Orbitals:

1. S-orbital - spherical shaped (electron density)

2. p-orbital - dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Basic principles:

- like charges repel each other
- unlike charges attract each other
- atoms want to be in inert gas electron configuration (is electronic)

Atoms	Protons (+)	Neutrons	1s electrons	2s electrons	2p electrons
Н	1	0	1		
Не	2	2	2		
Li	3	3	2	1	

Energy (E) level diagram for an atom:

Rules for filling electron – AUFBAU rule:

- add electron to lowest energy orbital available
- maximum two electron per orbital (each having opposite spin quantum number)
- Pauli Exclusion principle
- fill 1 electron into each orbital of same energy (degenerate orbital), then add second electron Hund rule

- all elements want inert gas configuration (e.g. Ne) and from above diagram both Li and F are unhappy with unfilled orbitals (not in inert gas configuration)

- Li could lose 1e⁻ from 2s orbital to be isoelectronic to He (as Li⁺) and F could gain 1e⁻ to be isoelectronic to Ne (as F⁻)

F

- in space these ions would be attracted to each other
- in solution they might be separated due to solvation (e.g. water would surround)
- in solid, they would form a crystalline solid structure

Electronic configuration of carbon (C):

- atomic number = 6_
- atomic weight = 12-
- other isotopes of carbon _

 - ¹³C (6p⁺, 7n) is a stable isotope, 1% natural abundance ¹⁴C (6p⁺, 8n) is radioactive, $t_{1/2} = 5700$ yrs, ¹⁴C dating of organic material

Methane, CH₄:

- tetrahedral geometry
- electron density is equidistance from nucleus
- four covalent bond between the carbon atom and the hydrogen atoms
- the angle between two H-atoms = 109°

Hybridization:

mixing of atomic orbitals (with wrong geometry for bonding) to form the hybrid orbitals that have correct geometry for bonding

atomic orbitals

Figure: Hybridization of 2nd shell s orbibtals (one) and p orbitals (three) of carbon

- the 2s orbital and 2p orbitals of carbon are mixed (hybridized) to form the four _ degenerate sp^3 orbitals note: sp^3 comes from the fact that one s-orbital and three p-orbitals are mixed
- -
- once the hybrid orbitals are formed, four hydrogen atoms can share the four _ electrons of the outer (bonding) shell of carbon to form four covalent bonds
- now, carbon is isoelectronic to neon and hydrogen is isoelectronic to helium _