Addition Reactions of Alkynes – Addition of water (requires acid) 1.

NOTE: do not need to worry about the mechanism of this reaction

4. Ozonolysis of alkynes:

eg.

5. Reactions of terminal alkynes: ${R-C \equiv C-H}$ eg.

- acidity of alkane / alkene / alkyne:

i.

$$H_3C-C H \longrightarrow H_3C-CH_2 + H^+$$

$$Ka = \frac{[CH_3CH_2][H]}{[CH_3CH_3]} = 10^{-46}$$

ii.

$$H_{2}C = CH + H^{+}$$

Ka =
$$\frac{[CH_2CH^-][H^+]}{[CH_2CH_2]}$$
 = 10⁻³⁶

iii.

HCECH
$$\rightarrow$$
 HCEC + H $^{\oplus}$

Ka =
$$\frac{[HC \equiv C] [H^+]}{[HC \equiv CH]} = 10^{-26}$$

- How strong a base needed?

Reactions of terminal acetylenes:

Acetylenes are key intermediates for making other types of compounds:

Problem: How to convert acetylene (ethyne) to hexanal (6 carbon aldehyde) using any other necessary reagents

- There are 2 types of elimination reactions:
 - E2 type elimination
 - E1 type elimination
 - i) E2 concerted: all bonds break and form at the same time
 - rate depends on two reagents
 - **stereospecific** stereochemistry of starting material determines the stereochemistry of product

the two units eliminated are H⁺ and Br⁻

Mechanism is E2:

ii) E1 - stepwise reaction – not concerted – carbocation intermediate
 - rate depends on one reagent
 - not stereospecific

